Document Type : Review Article

Authors

Faculty of Mechanical Engineering K. N. Toosi University of Technology, Tehran, Iran

10.30501/jree.2024.421225.1712

Abstract

This abstract offers a comprehensive review of recent advancements in Graphene Carbon Nitride (GCN) as a highly promising electrode material for supercapacitors. GCN boasts exceptional advantages, including abundant availability, a metal-free composition, high nitrogen content, and remarkable environmental sensitivity. These unique characteristics have positioned GCN at the forefront of research in energy storage and supercapacitor electrode materials. However, despite its potential, GCN faces challenges concerning limited specific capacity and energy density. To address these limitations, this review, as the first and most comprehensive in its field, focuses on innovative and novel development methods, particularly the strategic formation of nanostructures in 1, 2, and 3 dimensions. A notable finding of this review is the tremendous promise of 3D structures in enhancing the electrochemical properties of GCN as a supercapacitor electrode. A critical research gap in other review articles is the absence of comprehensive and innovative literature investigating nanostructures (1D, 2D, and 3D) with novel synthesis methods for using GCN as a supercapacitor electrode. This underscores the pressing need for further scholarly investigation in this area, as addressed by this review article. Overall, this professional review not only provides a comprehensive overview of advancements in GCN as a supercapacitor electrode material but also offers valuable guidance for researchers in the field. It highlights the importance of utilizing environmentally friendly synthesis techniques for fabricating multidimensional nanostructures, illuminating novel research directions and pioneering investigations. This empowers researchers to advance the utilization of GCN in energy storage applications.

Keywords

Main Subjects

Ali, B. A., Biby, A. H., & Allam, N. K. (2021). Toward the proper selection of carbon electrode materials for energy storage applications: experimental and theoretical insights. Energy & Fuels, 35(16), 13426-13437.
Ansari, S. A., & Cho, M. H. (2017). Growth of three-dimensional flower-like SnS 2 on gC 3 N 4 sheets as an efficient visible-light photocatalyst, photoelectrode, and electrochemical supercapacitance material. Sustainable Energy & Fuels, 1(3), 510-519.
Antil, B., Kumar, L., Das, M. R., & Deka, S. (2022). N-doped graphene modulated N-rich carbon nitride realizing a promising all-solid-state flexible supercapacitor. Journal of Energy Storage, 52, 104731.
Arora, R., Dhanda, M., Malik, R., Ahlawat, S., Yadav, M., Nehra, S. P., & Lata, S. (2023). Graphitic carbon nitride and graphene electrodes for supercapacitors’ energy accretion: A progressive excerpt. European Polymer Journal, 201, 112552.
Ashritha, M., & Hareesh, K. (2020). A review on Graphitic Carbon Nitride based binary nanocomposites as supercapacitors. Journal of Energy Storage, 32, 101840.
Bai, L., Huang, H., Yu, S., Zhang, D., Huang, H., & Zhang, Y. (2022). Role of transition metal oxides in g-C3N4-based heterojunctions for photocatalysis and supercapacitors. Journal of Energy Chemistry, 64, 214-235.
Bakr, A. E. A., El Rouby, W. M., Khan, M. D., Farghali, A. A., Xulu, B., & Revaprasadu, N. (2019). Synthesis and characterization of Z-scheme α-Fe2O3 NTs/ruptured tubular g-C3N4 for enhanced photoelectrochemical water oxidation. Solar Energy, 193, 403-412.
Barman, S., & Sadhukhan, M. (2012). Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. Journal of Materials Chemistry, 22(41), 21832-21837.
Butt, F. K., Hauenstein, P., Kosiahn, M., Garlyyev, B., Dao, M., Lang, A., Scieszka, D., Liang, Y., & Kreuzpaintner, W. (2020). An innovative microwave-assisted method for the synthesis of mesoporous two dimensional g-C3N4: a revisited insight into a potential electrode material for supercapacitors. Microporous and Mesoporous Materials, 294, 109853.
Chen, H., Hu, L., Chen, M., Yan, Y., & Wu, L. (2014). Nickel–cobalt layered double hydroxide nanosheets for high‐performance supercapacitor electrode materials. Advanced Functional Materials, 24(7), 934-942.
Chen, J., Mao, Z., Zhang, L., Wang, D., Xu, R., Bie, L., & Fahlman, B. D. (2017). Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS nano, 11(12), 12650-12657.
Chen, P., Liu, F., Chen, S., Guo, J.-K., Shen, S., Chen, L., Au, C.-T., & Yin, S.-F. (2019). A novel and efficient route for aryl ketones generation over Co3O4/Ag@ C3N4 photocatalyst. Chemical Engineering Science, 207, 271-279.
Choi, C., Ashby, D. S., Butts, D. M., DeBlock, R. H., Wei, Q., Lau, J., & Dunn, B. (2020). Achieving high energy density and high power density with pseudocapacitive materials. Nature Reviews Materials, 5(1), 5-19.
Dong, B., Li, M., Chen, S., Ding, D., Wei, W., Gao, G., & Ding, S. (2017). Formation of g-C3N4@ Ni (OH) 2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Applied Materials & Interfaces, 9(21), 17890-17896.
Dong, F., Wang, Z., Sun, Y., Ho, W.-K., & Zhang, H. (2013). Engineering the nanoarchitecture and texture of polymeric carbon nitride semiconductor for enhanced visible light photocatalytic activity. Journal of colloid and interface science, 401, 70-79.
Duan, Y., Li, X., Lv, K., Zhao, L., & Liu, Y. (2019). Flower-like g-C3N4 assembly from holy nanosheets with nitrogen vacancies for efficient NO abatement. Applied Surface Science, 492, 166-176.
Farrag, H. H., Abbas, A. A., Sayed, S. Y., Alalawy, H. H., El-Anadouli, B. E., Mohammad, A. M., & Allam, N. K. (2018). From rusting to solar power plants: a successful nano-pattering of stainless steel 316L for visible light-induced photoelectrocatalytic water splitting. ACS Sustainable Chemistry & Engineering, 6(12), 17352-17358.
Gao, X., Feng, J., Su, D., Ma, Y., Wang, G., Ma, H., & Zhang, J. (2019). In-situ exfoliation of porous carbon nitride nanosheets for enhanced hydrogen evolution. Nano Energy, 59, 598-609.
Ghanem, L. G., Sayed, D. M., Ahmed, N., Ramadan, M., & Allam, N. K. (2021). Binder-free electrospun Ni–Mn–O nanofibers embedded in carbon shells with ultrahigh energy and power densities for highly stable next-generation energy storage devices. Langmuir, 37(17), 5161-5171.
Idris, M. B., & Devaraj, S. (2019). Mesoporous graphitic carbon nitride synthesized using biotemplate as a high-performance electrode material for supercapacitor and electrocatalyst for hydrogen evolution reaction in acidic medium. Journal of Energy Storage, 26, 101032.
Isacfranklin, M., Ravi, G., Yuvakkumar, R., Kumar, P., Velauthapillai, D., Saravanakumar, B., Thambidurai, M., & Dang, C. (2020). Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceramics International, 46(10), 16291-16297.
Isacfranklin, M., Yuvakkumar, R., Ravi, G., Hong, S., Velauthapillai, D., Thambidurai, M., Dang, C., Algarni, T. S., & Al-Mohaimeed, A. M. (2021). Heterostructured SmCoO3/rGO composite for high-energy hybrid supercapacitors. Carbon, 172, 613-623.
Jiang, J., Zhang, Y., Nie, P., Xu, G., Shi, M., Wang, J., Wu, Y., Fu, R., Dou, H., & Zhang, X. (2018). Progress of nanostructured electrode materials for supercapacitors. Advanced Sustainable Systems, 2(1), 1700110.
Karuppaiah, M., Akilan, R., Sakthivel, P., Asaithambi, S., Shankar, R., Yuvakkumar, R., Hayakawa, Y., & Ravi, G. (2020). Synthesis of self-assembled micro/nano structured manganese carbonate for high performance, long lifespan asymmetric supercapacitors and investigation of atomic-level intercalation properties of OH− ions via first principle calculation. Journal of Energy Storage, 27, 101138.
Khaladkar, S. R., Maurya, O., Gund, G., Sinha, B., Dubal, D., Deshmukh, R., & Kalekar, A. (2023). Improving the charge kinetics through in-situ growth of NiSe nanoparticles on g-C3N4 nanosheets for efficient hybrid supercapacitors. Journal of Energy Chemistry, 87, 304-313.
Khan, M. D., Awan, S. U., Zequine, C., Zhang, C., Gupta, R. K., & Revaprasadu, N. (2020). Controlled synthesis of Sb2 (S1–x Se x) 3 (0≤ x≤ 1) solid solution and the effect of composition variation on electrocatalytic energy conversion and storage. ACS Applied Energy Materials, 3(2), 1448-1460.
King, S. T., Barber, K. E., Parham, J. J., & Stover, K. R. (2017). Shifts in antimicrobial consumption and infection rates before and during a piperacillin/tazobactam shortage. Journal of global antimicrobial resistance, 11, 111-113.
Kumar, A., Banerjee, K., & Liljeroth, P. (2017). Molecular assembly on two-dimensional materials. Nanotechnology, 28(8), 082001.
Kumar, A., & Khanuja, M. (2021). Template-free graphitic carbon nitride nanosheets coated with polyaniline nanofibers as an electrode material for supercapacitor applications. Renewable Energy, 171, 1246-1256.
Kumar, S., Saeed, G., Zhu, L., Hui, K. N., Kim, N. H., & Lee, J. H. (2021). 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: A review. Chemical Engineering Journal, 403, 126352.
Li, C., Li, M., Yin, S., Zeng, L., & Zhang, L. (2021). Electrochemical performance enhancement by the partial reduction of NiFe2O4@ g-C3N4 with core-shell hollow structure. Journal of Alloys and Compounds, 861, 157986.
Li, G., Sun, T., Fu, Y., Lei, L., & Zhuo, O. (2016). Graphitic C 3 N 4@ MWCNTs supported Mn 3 O 4 as a novel electrocatalyst for the oxygen reduction reaction in zinc–air batteries. Journal of Solid State Electrochemistry, 20, 2685-2692.
Li, M., Zheng, X., Xie, L., Yu, Y., & Jiang, J. (2021). The synergistic effect of carbon nanotubes and graphitic carbon nitride on the enhanced supercapacitor performance of cobalt diselenide-based composites. New Journal of Chemistry, 45(32), 14808-14814.
Li, R., Ren, Y., Zhao, P., Wang, J., Liu, J., & Zhang, Y. (2019). Graphitic carbon nitride (g-C3N4) nanosheets functionalized composite membrane with self-cleaning and antibacterial performance. Journal of hazardous materials, 365, 606-614.
Li, X., Xiong, J., Gao, X., Huang, J., Feng, Z., Chen, Z., & Zhu, Y. (2019). Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction. Journal of Alloys and Compounds, 802, 196-209.
Liang, Q., Shao, B., Tong, S., Liu, Z., Tang, L., Liu, Y., Cheng, M., He, Q., Wu, T., & Pan, Y. (2021). Recent advances of melamine self-assembled graphitic carbon nitride-based materials: design, synthesis and application in energy and environment. Chemical Engineering Journal, 405, 126951.
Liang, Q., Ye, L., Xu, Q., Huang, Z.-H., Kang, F., & Yang, Q.-H. (2015). Graphitic carbon nitride nanosheet-assisted preparation of N-enriched mesoporous carbon nanofibers with improved capacitive performance. Carbon, 94, 342-348.
Lin, T., Chen, I.-W., Liu, F., Yang, C., Bi, H., Xu, F., & Huang, F. (2015). Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. science, 350(6267), 1508-1513.
Liu, Y., Wen, G.-L., Chen, X., Weerasooriya, R., Hong, Z.-Y., Wang, L.-C., Huang, Z.-J., & Wu, Y.-C. (2020). Construction of electrochemical sensing interface towards Cd (II) based on activated gC 3 N 4 nanosheets: considering the effects of exfoliation and protonation treatment. Analytical and bioanalytical chemistry, 412, 343-353.
Lu, X., Wang, C., Favier, F., & Pinna, N. (2017). Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance. Advanced Energy Materials, 7(2), 1601301.
Luo, Y., Yan, Y., Zheng, S., Xue, H., & Pang, H. (2019). Graphitic carbon nitride based materials for electrochemical energy storage. Journal of Materials Chemistry A, 7(3), 901-924.
Mahzoon, S., Nowee, S. M., & Haghighi, M. (2018). Synergetic combination of 1D-2D g-C3N4 heterojunction nanophotocatalyst for hydrogen production via water splitting under visible light irradiation. Renewable Energy, 127, 433-443.
Maruthasalamoorthy, S., Aishwarya, K., Thenmozhi, R., Nirmala, R., Nagarajan, C., & Navamathavan, R. (2023). Superior cyclic stability and electrochemical performance of La supported Bi2S3@ g-C3N4//rGO heterostructure composite for asymmetric supercapacitor devices. Journal of Alloys and Compounds, 967, 171696.
Meroueh, L., Eagar, T. W., & Hart, D. P. (2020). Effects of Mg and Si doping on hydrogen generation via reduction of aluminum alloys in water. ACS Applied Energy Materials, 3(2), 1860-1868.
Mo, Z., Xu, H., Chen, Z., She, X., Song, Y., Wu, J., Yan, P., Xu, L., Lei, Y., & Yuan, S. (2018). Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy. Applied Catalysis B: Environmental, 225, 154-161.
Mustaqeem, M., Naikoo, G. A., Rahimi, F., Pedram, M. Z., Pourfarzad, H., Hassan, I. U., Arshad, F., & Chen, Y.-F. (2022). Rational design of Cu based composite electrode materials for high-performance supercapacitors–A review. Journal of Energy Storage, 51, 104330.
Mustaqeem, M., Naikoo, G. A., Yarmohammadi, M., Pedram, M. Z., Pourfarzad, H., Dar, R. A., Taha, S. A., Hassan, I. U., Bhat, M. Y., & Chen, Y.-F. (2022). Rational design of metal oxide based electrode materials for high performance supercapacitors–A review. Journal of Energy Storage, 55, 105419.
Naikoo, G. A., Bano, M., Hassan, I. U., Ayyub, M. M., & Zamani Pedram, M. (2023). Trimetallic CuO/Ag/NiO supported with silica nanoparticles based composite materials for green hydrogen production. Scientific Reports, 13(1), 16909.
Nazari, M., Rahmanifar, M. S., Noori, A., Li, W., Zhang, C., & Mousavi, M. F. (2021). The ordered mesoporous carbon nitride-graphene aerogel nanocomposite for high-performance supercapacitors. Journal of power sources, 494, 229741.
Ngo, Y.-L. T., Choi, W. M., Chung, J. S., & Hur, S. H. (2019). Highly biocompatible phenylboronic acid-functionalized graphitic carbon nitride quantum dots for the selective glucose sensor. Sensors and Actuators B: Chemical, 282, 36-44.
Niu, X., Wang, X., Guan, K., Wei, Q., & Liu, H. (2021). Preparation and electrochemical hydrogen storage application of mesoporous carbon CMK-3 coated Co2B alloy composite. Chemical Physics Letters, 778, 138762.
Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chemical reviews, 116(12), 7159-7329.
Pallavolu, M. R., Banerjee, A. N., Joo, S. W., & Jung, J. H. (2023). Two-step pyrolysis-hydrothermal synthesis of hierarchical nickel‑cobalt phosphate nanoflakes decorated on g-C3N4 nanosheets for high-performance hybrid supercapacitors. Journal of Energy Storage, 72, 108725.
Rahman, M. M., Joy, P. M., Uddin, M. N., Mukhlish, M. Z. B., & Khan, M. M. R. (2021). Improvement of capacitive performance of polyaniline based hybrid supercapacitor. Heliyon, 7(7).
Rangaraj, V. M., Yoo, J.-I., Song, J.-K., & Mittal, V. (2023). Three-dimensional (3D) MnMoO4@ g-C3N4/CNT hybrid composite electrode for hybrid capacitive deionization. Separation and Purification Technology, 317, 123898.
Rono, N., Kibet, J. K., Martincigh, B. S., & Nyamori, V. O. (2021). A review of the current status of graphitic carbon nitride. Critical Reviews in Solid State and Materials Sciences, 46(3), 189-217.
Sevilla, M., & Mokaya, R. (2014). Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 7(4), 1250-1280.
She, X., Xu, H., Xu, Y., Yan, J., Xia, J., Xu, L., Song, Y., Jiang, Y., Zhang, Q., & Li, H. (2014). Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu 2+. Journal of Materials Chemistry A, 2(8), 2563-2570.
Si, H., Deng, Q., Yin, C., Zhou, J., Zhang, S., Zhang, Y., Liu, Z., Zhang, J., Zhang, J., & Kong, J. (2020). Gas exfoliation of graphitic carbon nitride to improve the photocatalytic hydrogen evolution of metal-free 2D/2D g-C3N4/graphdiyne heterojunction. Journal of Alloys and Compounds, 833, 155054.
Sriram, B., Sathiyan, A., Wang, S.-F., Elanthamilan, E., Joseph, X. B., Baby, J. N., Merlin, J. P., & Ezhilarasi, J. C. (2021). Synergistic effect of Co3O4 nanoparticles with Bauhinia vahlii dry fruits derived activated carbon on energy storage applications. Journal of Solid State Chemistry, 295, 121931.
Tahir, M., Cao, C., Butt, F. K., Idrees, F., Mahmood, N., Ali, Z., Aslam, I., Tanveer, M., Rizwan, M., & Mahmood, T. (2013). Tubular graphitic-C 3 N 4: a prospective material for energy storage and green photocatalysis. Journal of Materials Chemistry A, 1(44), 13949-13955.
Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlögl, R., & Carlsson, J. M. (2008). Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 18(41), 4893-4908.
Vattikuti, S. P., Reddy, B. P., Byon, C., & Shim, J. (2018). Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors. Journal of Solid State Chemistry, 262, 106-111.
Wang, J., Zhang, C., Shen, Y., Zhou, Z., Yu, J., Li, Y., Wei, W., Liu, S., & Zhang, Y. (2015). Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. Journal of Materials Chemistry A, 3(9), 5126-5131.
Wang, Q., Jiao, L., Du, H., Wang, Y., & Yuan, H. (2014). Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. Journal of power sources, 245, 101-106.
Wang, S. (2019). g-C3N4 nanosheets as “on-off-on” selective fluorescence biosensor to detect ascorbic acid via redox reaction. Journal of Alloys and Compounds, 770, 952-958.
Wang, T. J., Wollert, K. C., Larson, M. G., Coglianese, E., McCabe, E. L., Cheng, S., Ho, J. E., Fradley, M. G., Ghorbani, A., & Xanthakis, V. (2012). Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation, 126(13), 1596-1604.
Wang, X., Wang, S., Su, D., Xu, S., Cao, S., & Xiao, Y. (2022). Constructing a pn heterojunction in 3D urchin-like CoNixSy/g-C3N4 composite microsphere for high performance asymmetric supercapacitors. Journal of Alloys and Compounds, 902, 163784.
Wang, Y.-J., Fang, B., Li, H., Bi, X. T., & Wang, H. (2016). Progress in modified carbon support materials for Pt and Pt-alloy cathode catalysts in polymer electrolyte membrane fuel cells. Progress in Materials Science, 82, 445-498.
Wang, Y., Liu, L., Ma, T., Zhang, Y., & Huang, H. (2021). 2D graphitic carbon nitride for energy conversion and storage. Advanced Functional Materials, 31(34), 2102540.
Xiao, Y., Tian, G., Li, W., Xie, Y., Jiang, B., Tian, C., Zhao, D., & Fu, H. (2019). Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis. Journal of the American Chemical Society, 141(6), 2508-2515.
Yu, F., Wang, L., Xing, Q., Wang, D., Jiang, X., Li, G., Zheng, A., Ai, F., & Zou, J.-P. (2020). Functional groups to modify g-C3N4 for improved photocatalytic activity of hydrogen evolution from water splitting. Chinese Chemical Letters, 31(6), 1648-1653.
Yuan, Y.-J., Shen, Z., Wu, S., Su, Y., Pei, L., Ji, Z., Ding, M., Bai, W., Chen, Y., & Yu, Z.-T. (2019). Liquid exfoliation of g-C3N4 nanosheets to construct 2D-2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Applied Catalysis B: Environmental, 246, 120-128.
Zhang, L., Jia, P., Guo, Z., Cai, Q., Li, Z., Zhu, X., Song, R., Yao, H., & Li, Z. (2023). Salts-assistant synthesis of g-C3N4/Prussian-blue analogue/nickel foam with hierarchical structures as binder-free electrodes for supercapacitors. Journal of colloid and interface science, 646, 78-88.
Zhang, R., Zhang, W., Shi, M., Li, H., Ma, L., & Niu, H. (2022). Morphology controllable synthesis of heteroatoms-doped carbon materials for high-performance flexible supercapacitor. Dyes and Pigments, 199, 109968.
Zhang, W., Zhang, J., Dong, F., & Zhang, Y. (2016). Facile synthesis of in situ phosphorus-doped gC 3 N 4 with enhanced visible light photocatalytic property for NO purification. RSC advances, 6(91), 88085-88089.
Zhao, P., Jin, B., Yan, J., & Peng, R. (2021). Fabrication of recyclable reduced graphene oxide/graphitic carbon nitride quantum dot aerogel hybrids with enhanced photocatalytic activity. RSC advances, 11(56), 35147-35155.
Zhao, S., Zhang, Y., Zhou, Y., Wang, Y., Qiu, K., Zhang, C., Fang, J., & Sheng, X. (2018). Facile one-step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting. Carbon, 126, 247-256.
Zhu, B., Cheng, B., Zhang, L., & Yu, J. (2019). Review on DFT calculation of s‐triazine‐based carbon nitride. Carbon Energy, 1(1), 32-56.
Zhu, B., Zhang, L., Cheng, B., & Yu, J. (2018). First-principle calculation study of tri-s-triazine-based g-C3N4: a review. Applied Catalysis B: Environmental, 224, 983-999.
Zou, X., Sun, Z., & Hu, Y. H. (2020). gC 3 N 4-based photoelectrodes for photoelectrochemical water splitting: A review. Journal of Materials Chemistry A, 8(41), 21474-21502.