Document Type : Research Article

Authors

1 Department of Mechanical Engineerig, Yazd University, Yazd, Iran.

2 Department of Engineerig, Meybod University, Meybod, Yazd, Iran.

10.30501/jree.2024.417780.1696

Abstract

Desalination stands out as a prominent method for obtaining fresh water from saltwater sources. The focus of this study revolves around a dehumidifier-dehumidifier system within a closed air-open water desalination framework, exploring two distinct modes: one without integration with solar collectors and the other incorporating solar collectors.Optimal conditions emerged with a fresh water circulation rate of 3 L/min and an incoming salt water flow rate of 1 L/min, resulting in a commendable maximum recovery ratio of 5.33%. Subsequently, in these optimal operating conditions, photovoltaic-thermal (PVT) panels were introduced to the desalination system, yielding insightful results. The output gain ratio (GOR), indicating the efficiency of converting heat to water evaporation, was 0.78 without connecting panels and 0.48 when panels were integrated. With panels connected, the desalination system achieved a peak fresh water production of 2.04 L/hr. Notably, the humidifier tower exhibited an impressive efficiency of 97%, while the dehumidifier tower operated at 40%. The solar collectors contributed significantly, meeting approximately 10% of the system's heating requirements and satisfying 7.3% of its electrical needs. The findings underscore the viability of integrating solar technology into desalination systems, showcasing not only increased fresh water output but also a noteworthy reduction in reliance on conventional energy sources. This innovative approach aligns with the global pursuit of sustainable and efficient water management solutions.

Keywords

Main Subjects

  1. Abdullah, A., Panchal, H., Alawee, W. H., & Omara, Z. (2023). Methods used to improve solar still performance with generated turbulence for water desalination-detailed review. Results in Engineering, 101251. https://doi.org/10.1016/j.rineng.2023.101251
  2. Arabi, M. K. A., & Reddy, K. V. (2003). Performance evaluation of desalination processes based on the humidification/dehumidification cycle with different carrier gases. Desalination, 156(1-3), 281-293. http://dx.doi.org/10.1016/S0011-9164(03)00359-X
  3. Bose, D., Goyal, K., & Bhardwaj, V. (2017). Design and development of a solar parabolic concentrator and integration with a solar desalination system. GRIN Verlag. https://www.grin.com/document/377110
  4. Chehayeb, K. M., Narayan, G. P., & Zubair, S. M. (2014). Use of multiple extractions and injections to thermodynamically balance the humidification dehumidification desalination system. International Journal of Heat and Mass Transfer, 68, 422-434. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.025
  5. Dehghani, S., Date, A., & Akbarzadeh, A. (2018). Performance analysis of a heat pump driven humidification-dehumidification desalination system. Desalination, 445, 95-104. https://doi.org/10.1016/j.desal.2018.07.033
  6. Dehghani, S., Date, A., & Akbarzadeh, A. (2019). An experimental study of brine recirculation in humidification-dehumidification desalination of seawater. Case Studies in Thermal Engineering, 14, 100463. https://doi.org/10.1016/j.csite.2019.100463
  7. Dehghani, S., Mahmoudi, F., & Akbarzadeh, A. (2020). Experimental performance evaluation of humidification–dehumidification system with direct-contact dehumidifier. Journal of Energy Resources Technology, 142(1). https://doi.org/10.1115/1.4044551
  8. Easa, A. S., Khalaf-Allah, R. A., Mohamed, S. M., Habba, M. I., & Tolan, M. T. (2024). Optimization of Humidification-Dehumidification solar desalination Unit: Comparative analysis. Applied Thermal Engineering, 236, 121610. https://doi.org/10.1016/j.applthermaleng.2023.121610
  9. Elattar, H., Fouda, A., & Nada, S. (2016). Performance investigation of a novel solar hybrid air conditioning and humidification–dehumidification water desalination system. Desalination, 382, 28-42. https://doi.org/10.1016/j.desal.2015.12.023
  10. Elhenawy, Y., Bassyouni, M., Fouad, K., Sandid, A. M., Abu-Zeid, M. A. E.-R., & Majozi, T. (2023). Experimental and numerical simulation of solar membrane distillation and humidification–dehumidification water desalination system. Renewable Energy, 215, 118915. http://dx.doi.org/10.3390/membranes13100821
  11. Fang, S.-C. (2022). Evaluation of low energy consumption control for seawater desalination on Penghu Island. Energy & Environment, 0958305X221127649. https://doi.org/10.1177/0958305X221127649
  12. Garcia-Rodriguez, L. (2002). Seawater desalination driven by renewable energies: a review. Desalination, 143(2), 103-113. https://doi.org/10.1016/S0011-9164(02)00232-1
  13. Hamed, M. H., Kabeel, A., Omara, Z., & Sharshir, S. (2015). Mathematical and experimental investigation of a solar humidification–dehumidification desalination unit. Desalination, 358, 9-17. http://dx.doi.org/10.1016/j.desal.2014.12.005
  14. Herez, A., El Hage, H., Lemenand, T., Ramadan, M., & Khaled, M. (2020). Review on photovoltaic/thermal hybrid solar collectors: Classifications, applications and new systems. Solar Energy, 207, 1321-1347. https://doi.org/10.1016/j.solener.2020.07.062
  15. Hermosillo, J.-J., Arancibia-Bulnes, C. A., & Estrada, C. A. (2012). Water desalination by air humidification: Mathematical model and experimental study. Solar Energy, 86(4), 1070-1076. https://doi.org/10.1016/j.solener.2011.09.016
  16. Hosseini, S., & Sarhaddi, F. (2017). Performance assessment of a humidification-dehumidification desalination unit connected to photovoltaic thermal collectors. Amirkabir Journal of Mechanical Engineering, 49(3), 653-662. https://doi.org/10.22060/mej.2016.765
  17. Kadhom, M. (2023). A review on the polyamide thin film composite (TFC) membrane used for desalination: Improvement methods, current alternatives, and challenges. Chemical Engineering Research and Design. https://doi.org/10.1016/j.cherd.2023.02.002
  18. Lai, L., Wang, X., Kefayati, G., & Hu, E. (2023). Analysis of a novel solid desiccant evaporative cooling system integrated with a humidification-dehumidification desalination unit. Desalination, 550, 116394. http://dx.doi.org/10.1016/j.desal.2023.116394
  19. Lall, U., Heikkila, T., Brown, C., & Siegfried, T. (2008). Water in the 21st century: Defining the elements of global crises and potential solutions. Journal of International Affairs, 1-17. https://www.jstor.org/stable/24358108
  20. Luberti, M., & Capocelli, M. (2023). Enhanced Humidification–Dehumidification (HDH) Systems for Sustainable Water Desalination. Energies, 16(17), 6352. https://doi.org/10.3390/en16176352
  21. Mortezapour, H., Mostafavi, M. H., Jafari Naeimi, K., & Shamsi, M. (2018). Experimental Analysis of a Humidification-Dehumidification Solar Desalination System Equipped with a Photovoltaic-Thermal Collector. Iranian Journal of Biosystems Engineering, 49(2), 295-305. https://doi.org/10.22059/ijbse.2017.241910.664985
  22. Naeini, A., Jalali, A., & Houshfar, E. (2023). Thermodynamic and thermoeconomic modeling of humidification-dehumidification desalination systems with bubble column dehumidifier. Desalination, 568, 117005. https://doi.org/10.22059/ijbse.2017.241910.664985
  23. Narayan, G. P., Mistry, K. H., Sharqawy, M. H., Zubair, S. M., & Lienhard, J. H. (2010). Energy effectiveness of simultaneous heat and mass exchange devices. http://dx.doi.org/10.5098/hmt.v1.2.3001
  24. Narayan, G. P., Sharqawy, M. H., Summers, E. K., Lienhard, J. H., Zubair, S. M., & Antar, M. A. (2010). The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renewable and sustainable energy reviews, 14(4), 1187-1201. https://doi.org/10.1016/j.rser.2009.11.014
  25. Sahay, A., Sethi, V., Tiwari, A., & Pandey, M. (2015). A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS). Renewable and sustainable energy reviews, 42, 306-312. https://doi.org/10.1016/j.rser.2014.10.009
  26. Srija, M., Bhandari, S., & Prasad, T. (2022). Quaternary Recycling Studies for Desalination Membrane Management. In Sustainable Chemical, Mineral and Material Processing: Select proceedings of 74th Annual Session of Indian Institute of Chemical Engineers (CHEMCON-2021) (pp. 121-132). Springer. https://link.springer.com/book/10.1007/978-981-19-7264-5
  27. Srithar, K., & Rajaseenivasan, T. (2017). Performance analysis on a solar bubble column humidification dehumidification desalination system. Process safety and environmental protection, 105, 41-50. https://doi.org/10.1016/j.psep.2016.10.002
  28. Xue, T., Yang, F., Zhao, X., He, F., Wang, Z., Wali, Q., Fan, W., & Liu, T. (2023). Portable solar interfacial evaporator based on polyimide nanofiber aerogel for efficient desalination. Chemical Engineering Journal, 461, 141909. https://dx.doi.org/10.2139/ssrn.4289747
  29. Zhou, S., Zhang, K., Yang, W., Zhu, X., & Shen, S. (2023). Evaluation of a heat pump coupled two-stage humidification-dehumidification desalination system with waste heat recovery. Energy Conversion and Management, 278, 116694. https://doi.org/10.1016/j.enconman.2023.116694