Document Type : Review Article

Authors

1 Department of Chemical Engineering, University of Mohaghegh Ardabili, P. O. Box: 179, Ardabil, Iran.

2 Department of Automotive Engineering, University of Science and Technology, P. O. Box: 16846-13114, Tehran, Iran.

Abstract

This article investigates the utilization of thermal management systems for electric car applications and their optimization through the incorporation of phase change materials (PCMs) and nanoparticles (NPs). In recent years, with the expansion of the automobile sector and the introduction of electric vehicles (EVs) into the market, new challenges have emerged. One critical challenge is managing heat in lithium batteries, as the performance of these batteries can deteriorate significantly outside the normal temperature range. Consequently, this research delves into the reasons favoring passive thermal management systems over active ones in the electric vehicle industry. Additionally, it elucidates the motivations behind opting for active thermal management systems and explores research on various types of phase change materials (PCMs) utilized in this domain, along with the impact of nanoparticle additives. The objective is to comprehensively understand why researchers employ different types of phase change materials (PCMs) in this field and how these materials can influence battery cooling, including factors such as the thermal conductivity of PCMs. It also scrutinizes which materials and simulations have been proposed for these systems and assesses their potential applicability to other vehicle components, as several components of electric vehicles that remain unexamined in the literature become increasingly apparent. In conclusion, the proposal is considering the use of phase change materials in other automobile components.  

Keywords

Main Subjects

  1. Al-Hallaj, S., & Selman, J. R. (2002). Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications. Journal of power sources, 110(2), 341-348. https://doi.org/10.1016/S0378-7753(02)00196-9.
  2. Al Hallaj, S., & Selman, J. (2000). A novel thermal management system for electric vehicle batteries using phase‐change material. Journal of the Electrochemical Society, 147(9), 3231. https://iopscience.iop.org/article/10.1149/1.1393888/meta.
  3. Alaoui, C. (2018). Passive/active BTMS for EV lithium-ion batteries. IEEE transactions on vehicular technology, 67(5), 3709-3719. https://doi.org/10.1109/TVT.2018.2791359.
  4. Arambarri, J., Hayden, J., Elkurdy, M., Meyers, B., Abu Hamatteh, Z. S., Abbassi, B., & Omar, W. (2019). Lithium ion car batteries: Present analysis and future predictions. Environmental Engineering Research, 24(4), 699-710. https://doi.org/10.4491/eer.2018.383.
  5. Arasu, A., Sasmito, A., & Mujumdar, A. (2012). Thermal performance enhancement of paraffin wax with Al2O3 and CuO nanoparticles–a numerical study. Frontiers in Heat and Mass Transfer (FHMT), 2(4). http://dx.doi.org/10.5098/hmt.v2.4.3005.
  6. Babapoor, A., Haghighi, A. R., Jokar, S. M., & Ahmadi Mezjin, M. (2022). The performance enhancement of paraffin as a PCM during the solidification process: utilization of graphene and metal oxide nanoparticles. Iranian Journal of Chemistry and Chemical Engineering, 41(1), 37-48. https://doi.org/10.30492/ijcce.2020.127799.4135.
  7. Babapoor, A., Karimi, G., & Khorram, M. (2016). Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning. Applied Thermal Engineering, 99, 1225-1235. https://doi.org/10.1016/j.applthermaleng.2016.02.026.
  8. Babapoor, A., Karimi, G., & Sabbaghi, S. (2016). Thermal characteristic of nanocomposite phase change materials during solidification process. Journal of Energy Storage, 7, 74-81. https://doi.org/10.1016/j.est.2016.05.006.
  9. Bahari, M., Najafi, B., & Babapoor, A. (2020). Evaluation of α-AL2O3-PW nanocomposites for thermal energy storage in the agro-products solar dryer. Journal of Energy Storage, 28, 101181. https://doi.org/10.1016/j.est.2019.101181.
  10. Chen, M., Ouyang, D., Weng, J., Liu, J., & Wang, J. (2019). Environmental pressure effects on thermal runaway and fire behaviors of lithium-ion battery with different cathodes and state of charge. Process Safety and Environmental Protection, 130, 250-256. https://doi.org/10.1016/j.psep.2019.08.023.
  11. Choi, S. U., & Eastman, J. A. (1995). Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab.(ANL), Argonne, IL (United States). https://www.osti.gov/biblio/196525.
  12. Das, S. K., Choi, S. U., Yu, W., & Pradeep, T. (2007). Nanofluids: science and technology. John Wiley & Sons. https://books.google.co.uk/books?hl=fa&lr=&id=QpbOpMSpXpYC&oi=fnd&pg=PR7&dq=Das+SK,+Choi+SU,+Yu+W,+Pradeep+T.+Nanofluids:+science+and+technology:+John+Wiley+%26+Sons%3B+2007.&ots=fmd4ezY9VW&sig=AJKU188GPFvBH4GVI4UFMzQesgg&redir_esc=y#v=onepage&q&f=false.
  13. Delgado, M., Lázaro, A., Penalosa, C., & Zalba, B. (2014). Experimental analysis of the influence of microcapsule mass fraction on the thermal and rheological behavior of a PCM slurry. Applied Thermal Engineering, 63(1), 11-22. https://doi.org/10.1016/j.applthermaleng.2013.10.011.
  14. El Idi, M. M., Karkri, M., & Tankari, M. A. (2021). A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations. International Journal of Heat and Mass Transfer, 169, 120894. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120894.
  15. Feng, X., Ouyang, M., Liu, X., Lu, L., Xia, Y., & He, X. (2018). Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy Storage Materials, 10, 246-267. (https://doi.org/10.1016/j.ensm.2017.05.013.
  16. Feng, X., Xu, C., He, X., Wang, L., Zhang, G., & Ouyang, M. (2018). Mechanisms for the evolution of cell variations within a LiNixCoyMnzO2/graphite lithium-ion battery pack caused by temperature non-uniformity. Journal of cleaner production, 205, 447-462. https://doi.org/10.1016/j.jclepro.2018.09.003.
  17. Gado, M. G., Megahed, T. F., Ookawara, S., Nada, S., & El-Sharkawy, I. I. (2021). Performance and economic analysis of solar-powered adsorption-based hybrid cooling systems. Energy Conversion and Management, 238, 114134. https://doi.org/10.1016/j.enconman.2021.114134.
  18. Ghoghaei, M. S., Mahmoudian, A., Mohammadi, O., Shafii, M. B., Jafari Mosleh, H., Zandieh, M., & Ahmadi, M. H. (2021). A review on the applications of micro-/nano-encapsulated phase change material slurry in heat transfer and thermal storage systems. Journal of Thermal Analysis and Calorimetry, 145, 245-268. https://doi.org/10.1007/s10973-020-09697-6.
  19. Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., & Balandin, A. A. (2014). Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries. Journal of power sources, 248, 37-43. https://doi.org/10.1016/j.jpowsour.2013.08.135.
  20. Guo, J., & Jiang, F. (2021). A novel electric vehicle thermal management system based on cooling and heating of batteries by refrigerant. Energy Conversion and Management, 237, 114145. https://doi.org/10.1016/j.enconman.2021.114145.
  21. Hamut, H. S., Javani, N., & Dinçer, I. (2016). Thermal management of electric vehicle battery systems. John Wiley & Sons. https://www.wiley.com/en-us/Thermal+Management+of+Electric+Vehicle+Battery+Systems-p-9781118900246
  22. Harikrishnan, S., Imran Hussain, S., Devaraju, A., Sivasamy, P., & Kalaiselvam, S. (2017). Improved performance of a newly prepared nano-enhanced phase change material for solar energy storage. Journal of Mechanical Science and Technology, 31(10), 4903-4910. https://doi.org/10.1007/s12206-017-0938-y.
  23. Hekmat, S., Bamdezh, M., & Molaeimanesh, G. (2022). Hybrid thermal management for achieving extremely uniform temperature distribution in a lithium battery module with phase change material and liquid cooling channels. Journal of Energy Storage, 50, 104272. https://doi.org/10.1016/j.est.2022.104272.
  24. Heyhat, M. M., Mousavi, S., & Siavashi, M. (2020). Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle. Journal of Energy Storage, 28, 101235. https://doi.org/10.1016/j.est.2020.101235.
  25. Jaguemont, J., Omar, N., Van den Bossche, P., & Mierlo, J. (2018). Phase-change materials (PCM) for automotive applications: A review. Applied Thermal Engineering, 132, 308-320. https://doi.org/10.1016/j.applthermaleng.2017.12.097.
  26. Javani, N., Dincer, I., Naterer, G., & Rohrauer, G. (2014). Modeling of passive thermal management for electric vehicle battery packs with PCM between cells. Applied Thermal Engineering, 73(1), 307-316. https://doi.org/10.1016/j.applthermaleng.2014.07.037.
  27. Javani, N., Dincer, I., Naterer, G., & Yilbas, B. (2014). Exergy analysis and optimization of a thermal management system with phase change material for hybrid electric vehicles. Applied Thermal Engineering, 64(1-2), 471-482. https://doi.org/10.1016/j.applthermaleng.2013.11.053.
  28. Ji, C., Wang, B., Wang, S., Pan, S., Wang, D., Qi, P., & Zhang, K. (2019). Optimization on uniformity of lithium-ion cylindrical battery module by different arrangement strategy. Applied Thermal Engineering, 157, 113683. https://doi.org/10.1016/j.applthermaleng.2019.04.093.
  29. Jilte, R., Afzal, A., & Panchal, S. (2021). A novel battery thermal management system using nano-enhanced phase change materials. Energy, 219, 119564. https://doi.org/10.1016/j.energy.2020.119564.
  30. Jilte, R., Ahmadi, M. H., Kumar, R., Kalamkar, V., & Mosavi, A. (2020). Cooling performance of a novel circulatory flow concentric multi-channel heat sink with nanofluids. Nanomaterials, 10(4), 647. https://doi.org/10.3390/nano10040647.
  31. Jilte, R., Kumar, R., & Ahmadi, M. H. (2019). Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. Journal of Cleaner Production, 240, 118131. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.130.
  32. Kadoono, T., & Ogura, M. (2014). Heat storage properties of organic phase-change materials confined in the nanospace of mesoporous SBA-15 and CMK-3. Physical Chemistry Chemical Physics, 16(12), 5495-5498. https://doi.org/10.1039/C3CP55429E.
  33. Kakaç, S., & Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids. International journal of heat and mass transfer, 52(13-14), 3187-3196. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006.
  34. Kenisarin, M., & Mahkamov, K. (2016). Passive thermal control in residential buildings using phase change materials. Renewable and Sustainable Energy Reviews, 55, 371-398. https://doi.org/10.1016/j.rser.2015.10.128.
  35. Khodadadi, J., Fan, L., & Babaei, H. (2013). Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 24, 418-444. https://doi.org/10.1016/j.rser.2013.03.031.
  36. Khodadadi, J., & Hosseinizadeh, S. (2007). Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International communications in heat and mass transfer, 34(5), 534-543. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.005.
  37. Kibria, M., Anisur, M., Mahfuz, M., Saidur, R., & Metselaar, I. (2015). A review on thermophysical properties of nanoparticle dispersed phase change materials. Energy conversion and management, 95, 69-89. https://doi.org/10.1016/j.enconman.2015.02.028.
  38. Kizilel, R., Lateef, A., Sabbah, R., Farid, M., Selman, J., & Al-Hallaj, S. (2008). Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1), 370-375. https://doi.org/10.1016/j.jpowsour.2008.04.050.
  39. Kojok, F., Fardoun, F., Younes, R., & Outbib, R. (2016). Hybrid cooling systems: A review and an optimized selection scheme. Renewable and Sustainable Energy Reviews, 65, 57-80. https://doi.org/10.1016/j.rser.2016.06.092.
  40. Lei, S., & Nolan, K. (2014). Numerical simulations of viscoelastic flow over a confined cylinder in microchannels. Fourteenth intersociety conference on thermal and thermomechanical phenomena in electronic systems (ITherm) (pp. 369-373). IEEE. https://doi.org/10.1109/ITHERM.2014.6892304.
  41. Li, Q., Yang, C., Santhanagopalan, S., Smith, K., Lamb, J., Steele, L. A., & Torres-Castro, L. (2019). Numerical investigation of thermal runaway mitigation through a passive thermal management system. Journal of power sources, 429, 80-88. https://doi.org/10.1016/j.jpowsour.2013.11.059.
  42. Li, W., Qu, Z., He, Y., & Tao, Y. (2014). Experimental study of a passive thermal management system for high-powered lithium ion batteries using porous metal foam saturated with phase change materials. Journal of power sources, 255, 9-15. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120894.
  43. Li, W., Wan, H., Jing, T., Li, Y., Liu, P., He, G., & Qin, F. (2019). Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: A numerical and experimental study. Applied Thermal Engineering, 146, 413-421. https://doi.org/10.1016/j.applthermaleng.2018.10.006.
  44. Li, W., Zhang, D., Jing, T., Gao, M., Liu, P., He, G., & Qin, F. (2018). Nano-encapsulated phase change material slurry (Nano-PCMS) saturated in metal foam: A new stable and efficient strategy for passive thermal management. Energy, 165, 743-751. https://doi.org/10.1016/j.energy.2018.09.147.
  45. Li, X., Wang, Q., Yang, Y., & Kang, J. (2019). Correlation between capacity loss and measurable parameters of lithium-ion batteries. International Journal of Electrical Power & Energy Systems, 110, 819-826. https://doi.org/10.1016/j.jpowsour.2019.04.091.
  46. Ling, Z., Chen, J., Fang, X., Zhang, Z., Xu, T., Gao, X., & Wang, S. (2014). Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system. Applied energy, 121, 104-113. https://doi.org/10.1016/j.apenergy.2014.01.075.
  47. Lyu, Y., Siddique, A., Majid, S. H., Biglarbegian, M., Gadsden, S., & Mahmud, S. (2019). Electric vehicle battery thermal management system with thermoelectric cooling. Energy Reports, 5, 822-827. https://doi.org/10.1016/j.egyr.2019.06.016.
  48. Lyu, Y., Siddique, A. R. M., Gadsden, S. A., & Mahmud, S. (2021). Experimental investigation of thermoelectric cooling for a new battery pack design in a copper holder. Results in Engineering, 10, 100214. https://doi.org/10.1016/j.rineng.2021.100214.
  49. Madani, S. S., Swierczynski, M. J., & Kær, S. K. (2017). A review of thermal management and safety for lithium ion batteries. 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), https://doi.org/10.1109/EVER.2017.7935914.
  50. Maleki, H., & Howard, J. N. (2006). Effects of overdischarge on performance and thermal stability of a Li-ion cell. Journal of power sources, 160(2), 1395-1402. https://doi.org/10.1016/j.jpowsour.2006.03.043.
  51. Malik, M., Dincer, I., & Rosen, M. A. (2016). Review on use of phase change materials in battery thermal management for electric and hybrid electric vehicles. International Journal of Energy Research, 40(8), 1011-1031. (https://doi.org/10.1002/er.3496.
  52. Mondal, B., Lopez, C. F., & Mukherjee, P. P. (2017). Exploring the efficacy of nanofluids for lithium-ion battery thermal management. International Journal of Heat and Mass Transfer, 112, 779-794. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.130.
  53. Moraga, N. O., Xamán, J. P., & Araya, R. H. (2016). Cooling Li-ion batteries of racing solar car by using multiple phase change materials. Applied Thermal Engineering, 108, 1041-1054. https://doi.org/10.1016/j.applthermaleng.2016.07.183.
  54. Pan, L., Tao, Q., Zhang, S., Wang, S., Zhang, J., Wang, S., Wang, Z., & Zhang, Z. (2012). Preparation, characterization and thermal properties of micro-encapsulated phase change materials. Solar Energy Materials and Solar Cells, 98, 66-70. https://doi.org/10.1016/j.solmat.2011.09.020.
  55. Patel, J. R., & Rathod, M. K. (2020). Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries. Journal of Power Sources, 480, 228820. https://doi.org/10.1016/j.jpowsour.2020.228820.
  56. Qin, P., Liao, M., Zhang, D., Liu, Y., Sun, J., & Wang, Q. (2019). Experimental and numerical study on a novel hybrid battery thermal management system integrated forced-air convection and phase change material. Energy Conversion and Management, 195, 1371-1381. https://doi.org/10.1016/j.enconman.2019.05.084.
  57. Qureshi, M. Z. A., & Ashraf, M. (2018). Computational analysis of nanofluids: A review. The European Physical Journal Plus, 133, 1-22. https://doi.org/10.1140/epjp/i2018-11878-2.
  58. Rao, Z., Huo, Y., Liu, X., & Zhang, G. (2015). Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam. Journal of the Energy Institute, 88(3), 241-246. https://doi.org/10.1016/j.joei.2014.09.006.
  59. Rao, Z., Wang, S., & Zhang, Y. (2014). Thermal management with phase change material for a power battery under cold temperatures. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(20), 2287-2295. https://doi.org/10.1080/15567036.2011.576411.
  60. Robinson, J. B., Darr, J. A., Eastwood, D. S., Hinds, G., Lee, P. D., Shearing, P. R., Taiwo, O. O., & Brett, D. J. (2014). Non-uniform temperature distribution in Li-ion batteries during discharge–A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach. Journal of power sources, 252, 51-57. https://doi.org/10.1016/j.jpowsour.2013.11.059.
  61. Sabbah, R., Kizilel, R., Selman, J., & Al-Hallaj, S. (2008). Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution. Journal of power sources, 182(2), 630-638. https://doi.org/10.1016/j.jpowsour.2008.03.082.
  62. Senturk Acar, M., & Arslan, O. (2018). Performance analysis of a new hybrid cooling–drying system. Environmental Progress & Sustainable Energy, 37(5), 1808-1828. https://doi.org/10.1002/ep.12832.
  63. Shahbaz, K., AlNashef, I., Lin, R., Hashim, M., Mjalli, F., & Farid, M. (2016). A novel calcium chloride hexahydrate-based deep eutectic solvent as a phase change materials. Solar Energy Materials and Solar Cells, 155, 147-154. https://doi.org/10.1016/j.solmat.2016.06.004.
  64. Singh, P., Sharma, R., Ansu, A., Goyal, R., Sarı, A., & Tyagi, V. (2021). A comprehensive review on development of eutectic organic phase change materials and their composites for low and medium range thermal energy storage applications. Solar Energy Materials and Solar Cells, 223, 110955. https://doi.org/10.1016/j.solmat.2020.110955.