Document Type : Research Article

Authors

1 Department of Electrical Engineering, ITER, Siksha ‘O’Anusandhan University, Bhubaneswar, P. O. Box: 751030, Odisha, India.

2 Department of Electrical and Electronics Engineering, ITER, Siksha ‘O’Anusandhan University, Bhubaneswar, P. O. Box: 751030, Odisha, India.

Abstract

The design of a Spotted Hyena Optimization Algorithm-Variable Parameter Tilt Integral Derivative with Filter (SHO-VPTIDF) controller for improved performance and enhanced devaluation of harmonic components of grid-connected photovoltaic systems is the main objective of the suggested manuscript. The SHO-VPTIDF controller is proposed by reformulating Tilt Integral Derivative Controller with Filter (TIDCF). The TIDCF is characterized by longer simulation time, lower robustness, longer settling time, attenuated ability for noise rejection, and limited use. This research gap is addressed by replacing the constant gains of TIDCF by variable parameter tilt integral derivative with filter. The VPTIDF replaces the constant gains of TIDCF with error varying control parameters to improve the robustness of the system. The photovoltaic system with nonlinearities causes power quality issues and occasional faults, which can be detected by using Levenberg-Marquardt Algorithm (LMA) based machine learning technique. The novelties of the proposed manuscript including improved stability, better robustness, upgraded accuracy, better harmonic mitigation ability, and improved ability to handle uncertainties are verified in a Matlab simulink environment. In this manuscript, the SHO-VPTIDF and the Direct and Quadrature Control based Sinusoidal Pulse Width Modulation (DQCSPWM) method are employed for fault classification, harmonic diminishing, stability enhancement, better system performance, better accuracy, improved robustness, and better capabilities to handle system uncertainties.

Keywords

Main Subjects

1. Ahmad, Z., & Singh, S. N. (2017). Comparative analysis of single phase transformerless inverter topologies for grid connected PV system. Solar Energy149(1), 245-271.
2. Ben Makhlouf, A., Boucenna, D., & Hammami, M. A. (2020). Existence and stability results for generalized fractional differential equations. Acta Mathematica Scientia40(1), 141-154.
3. Chaithanakulwat, A., Thungsuk, N., Savangboon, T., Boontua, S., & Sardyoung, P. (2021). Optimized DQ vector control of single-phase grid-connected inverter for photovoltaic system. Journal Européen des Systèmes Automatisés54(1), 45-54.  https://doi.org/10.18280/jesa.540106
4. Dhiman, G., & Kumar, V. (2017). Spotted hyena optimizer: a novel bio-inspired based metaheuristic technique for engineering applications. Advances in Engineering Software114(1), 48-70.
5. Fazai, R., Abodayeh, K., Mansouri, M., Trabelsi, M., Nounou, H., Nounou, M., & Georghiou, G. E. (2019). Machine learning-based statistical testing hypothesis for fault detection in photovoltaic systems. Solar Energy190(1), 405-413. https://doi.org/10.1016/j.solener.2019.08.032
6. Hu, X., Ma, P., Wang, J., & Tan, G. (2019). A hybrid cascaded DC–DC boost converter with ripple reduction and large conversion ratio. IEEE Journal of Emerging and Selected Topics in Power Electronics8(1), 761-770. https://doi.org/10.1109/JESTPE.2019.2895673
7. Huang, K. P., Wang, Y., & Wai, R. J. (2018). Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid. IEEE Transactions on Power Electronics34(3), 2938-2955. https://doi.org/10.1109/TPEL.2018.2845466
8. Keddar, M., Doumbia, M. L., Krachai, M. D., Belmokhtar, K., & Midoun, A. H. (2019). Interconnection performance analysis of single phase neural network based NPC and CHB multilevel inverters for grid-connected PV systems. International Journal of Renewable Energy Research9(3), 1451-1461.  https://doi.org/10.20508/ijrer.v9i3.9593.g7730
9. Khan, M. N. H., Forouzesh, M., Siwakoti, Y. P., Li, L., Kerekes, T., & Blaabjerg, F. (2019). Transformerless inverter topologies for single-phase photovoltaic systems: A comparative review. IEEE Journal of Emerging and Selected Topics in Power Electronics8(1), 805-835. https://doi.org/10.1109/JESTPE.2019.2908672
10. Marrero, L., García-Santander, L., Hernandez-Callejo, L., Bañuelos-Sánchez, P., & González, V. J. (2021). Harmonic distortion characterization in groups of distribution networks applying the IEEE Standard 519-2014. IEEE Latin America Transactions19(4), 526-533. https://doi.org/10.1109/TLA.2021.9448534
11. Missula, J. V., Adda, R., & Tripathy, P. (2021). Averaged modeling and SRF-based closed-loop control of single-phase ANPC inverter. IEEE Transactions on Power Electronics36(12), 13839-13854. https://doi.org/10.1109/TPEL.2021.3083279
12.  Mokhtar, M., Marei, M. I., & Attia, M. A. (2021). Hybrid SCA and adaptive controller to enhance the performance of grid-connected PV system. Ain Shams Engineering Journal12(4), 3775-3781.  https://doi.org/10.1016/j.asej.2021.03.019
13. Patra, A. K., & Rout, P. K. (2020). Design of artificial pancreas based on the SMGC and self-tuning PI control in type-I diabetic patient. International Journal of Biomedical Engineering and Technology32(1), 1-35.  https://doi.org/10.1504/IJBET.2020.104675
14. Patra, A. K., Biswal, S. S., & Rout, P. K. (2022). Backstepping linear quadratic gaussian controller design for balancing an inverted pendulum. IETE Journal of Research68(1), 150-164.
15. Rath, D., Patra, A. K., & Kar, S. K. (2021). Riddance and harmonic characterisation of photovoltaic fed single phase h-cascaded multilevel inverter. International Journal of Advanced Mechatronic Systems9(3), 133-145.  https://doi.org/10.1504/IJAMECHS.2021.119107
16. Sadaf, S., Bhaskar, M. S., Meraj, M., Iqbal, A., & Al-Emadi, N. (2020). A novel modified switched inductor boost converter with reduced switch voltage stress. IEEE Transactions on Industrial Electronics68(2), 1275-1289. https://doi.org/10.1109/TIE.2020.2970648.
17. Sattianadan, D., Gorai, S., Kumar, G. P., Vidyasagar, S., & Shanmugasundaram, V. (2020). Potency of PR controller for multiple harmonic compensation for a single-phase grid connected system. International Journal of Power Electronics and Drive Systems11(3), 1491-1499.  https://doi.org/10.11591/ijpeds.v11.i3.pp1491-1498
18. Tzounas, G., Dassios, I., Murad, M. A. A., & Milano, F. (2020). Theory and implementation of fractional order controllers for power system applications. IEEE Transactions on Power Systems35(6), 4622-4631. https://doi.org/10.1109/TPWRS.2020.2999415
19. Wang, X., Qin, K., Ruan, X., Pan, D., He, Y., & Liu, F. (2020). A robust grid-voltage feedforward scheme to improve adaptability of grid-connected inverter to weak grid condition. IEEE Transactions on Power Electronics36(2), 2384-2395. https://doi.org/10.1109/TPEL.2020.3008218
20. Xu, J., Qian, Q., Zhang, B., & Xie, S. (2019). Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact. IEEE Transactions on Sustainable Energy10(3), 1470-1480. https://doi.org/10.1109/TSTE.2019.2893679
21. Yaqoob, S. J., Obed, A., Zubo, R., Al-Yasir, Y. I., Fadhel, H., Mokryani, G., & Abd-Alhameed, R. A. (2021). Flyback photovoltaic micro-inverter with a low cost and simple digital-analog control scheme. Energies14(14), 4239-4251.    https://doi.org/10.3390/en14144239
22. Zeb, K., Islam, S. U., Din, W. U., Khan, I., Ishfaq, M., Busarello, T. D. C., ... & Kim, H. J. (2019). Design of fuzzy-PI and fuzzy-sliding mode controllers for single-phase two-stages grid-connected transformerless photovoltaic inverter. Electronics8(5), 520-539.  https://doi.org/10.3390/electronics8050520
23. Zhao, H., Wang, S., & Moeini, A. (2018). Critical parameter design for a cascaded H-bridge with selective harmonic elimination/compensation based on harmonic envelope analysis for single-phase systems. IEEE Transactions on Industrial Electronics66(4), 2914-2925.  https://doi.org/10.1109/TIE.2018.2842759