Abstract




 
   

Vol. 4, No. 1 (Winter 2017) 46-60   

Link: http://www.jree.ir/Vol4/No1/6.pdf
 
Downloaded Downloaded: 18   Viewed Viewed: 175

  An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells
 
S. Sarirchi and S. Rowshanzamir
 
( Received: September 01, 2017 – Accepted: February 02, 2018 )
 
 

Abstract    Nowadays, proton exchange membrane fuel cells (PEMFCs) have emerged as promising power supply systems for stationary, vehicular, and portable applications. Traditionally, these devices were based on perfluoro-sulfonic acid membrane electrolytes, given the commercial name Nafion. Nafion is currently the most commercially utilized electrolyte membranes for polymer electrolyte fuel cells, with high chemical stability, proton conductivity and strong mechanical properties. While these polymer electrolytes have satisfactory properties for fuel cell applications, they limit commercial use due to significant high costs as well as reduced performance at high temperatures and low humidity. A promising alternative to obtaining high-performance proton-conducting polymer electrolyte membranes are through the use of hydrocarbon polymers. Various studies in the open literature confirmed that Sulfonated poly ether ether ketone (SPEEK) is a promising PEM because of its low-cost, low fuel cross over, and good mechanical and thermal stabilities. Nevertheless, depending on the variation of the sulfonation degree (DS), the mechanical properties of SPEEK membranes could deteriorate progressively (at higher DS). To solve this key issue, SPEEK has been used as a major component in the synthesis of hybrid/blend membranes. The introduced inorganic particles to the polymer membranes might be silica, zirconia, titania, heteropolyacids, carbon nanotubes, and so on. Increased proton conductivity, water retention at high temperatures, chemical, and mechanical properties are mentioned as some advantage of incorporating inorganic material into hybrid membranes. Indeed, the addition of an inorganic material into SPEEK matrix could improve the physicochemical properties of the resulted composite membrane such as proton conductivity, hydrophilicity, thermal, mechanical and chemical stability. High mechanical and thermal stability, electrical and magnetic activities are provided by inorganic segments, while the organic segments provide flexibility, multi-functional reactivity, and facilitate machining at low temperature. SPEEK blends have a good potential to alter Nafion at high-temperature operating conditions. In this paper, we focus on the recent advances in the development of novel SPEEK-based hybrid membranes that work well under elevated temperature and/or low relative humidity.

 

Keywords    Fuel cell, poly ether ether ketone, nanocomposite, membrane

 

چکیده    امروزه پیل‌های سوختی غشا تبادل پروتون به عنوان منبع قدرت برای کاربردهای متمرکز، حمل و نقل و متحرک (قابل‌حمل) مورد توجه هستند. غشاهای پرفلئورینه سولفونیک اسید مانند نفیون بطور عمده به عنوان الکترولیت استفاده می‌شوند؛ زیرا پایداری شیمیایی، مکانیکی و هدایت حرارتی بالایی دارند. بااین‌وجود، مشکلاتی مانند محدوده دمای عملیاتی محدود و هزینه تولید بالا، توجه محققین را به مواد جایگزین معطوف کرده است. پلیمرهای هیدروکربنی آروماتیک سولفونه مانند پلی‌اتراترکتون سولفونه گزینه‌ای نویدبخش به علت قیمت پایین، عبورپذیری پایین گاز، پایداری مکانیکی و حرارتی مطلوب (امکان استفاده در دمای عملیاتی بالا) هستند؛ اما بسته به درجه سولفوناسیون خواص مکانیکی غشاهای پلی‌اتراترکتون سولفونه سریعاً کاهش می‌یابد. برای حل این مشکل از غشاهای هیبرید/مخلوط برپایه پلی‌اتراترکتون سولفونه استفاده می‌شود. معمولاً اجزاء افزوده به این غشاها موادی همچون: سیلیکا، زیرکونیا، تیتانیا، هتروپلی اسید، نانوتیوب‌های کربنی و مواردی از این دست هستند. از مزایای افزودن مواد معدنی به شبکه پلیمری می‌توان به مواردی همچون افزایش هدایت پروتون، افزایش ماندگاری آب در دمای بالا و بهبود خواص شیمیایی و مکانیکی اشاره نمود. در واقع، ماده معدنی افزودنی باعث بهبودخواص فیزیکی و شیمیایی غشای کامپوزیت می‌گردد. پایداری حرارتی بالا، فعالیت‌های مطلوب الکتریکی و مغناطیسی حاصل در غشای کامپوزیت از خواص جزء معدنی بوده، درحالیکه انعطاف پذیری، واکنش‌پذیری چند منظوره و ماشین‌کاری آسان در دمای پایین از خواص جزء آلی هستند. با توجه به موارد ذکر شده، غشاهای کامپوزیت برپایه پلی‌اتراترکتون سولفونه قابلیت جایگزینی با نفیون در دمای بالا در پیل سوختی را دارند. مقاله پیش‌رو شرح مختصری بر آخرین دستاوردها جهت توسعه غشاهای نوین برپایه پلی‌اتراترکتون سولفونه با قابلیت کاربرد در دمای بالا و یا استفاده در محیط‌های با رطوبت پایین است.

References    [1]        Lee, C., et al., SiO2/sulfonated poly ether ether ketone (SPEEK) composite nanofiber mat supported proton exchange membranes for fuel cells. Journal of Materials Science, 2013. 48(10): p. 3665–3671. [2]        Li, L., et al., Synthesis of Sulfonated Fluorenyl-Containing Poly(ether ether ketone ketone)s and Their Blends with an Amino-Functionalized Poly(ether ether ketone) for Fuel Cell Applications. Macromolecular Research, 2013. 21: p. 719-725. [3]        Rangasamy, V.S., et al., Preparation and characterization of composite membranes based on sulfonated PEEK and AlPO4 for PEMFCs. Solid State Ionics 2012. 216: p. 83–89. [4]        Tripathi, B.P. and V.K. Shahi, Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Progress in Polymer Science 2011. 36: p. 945–979. [5]        Hung, T.F., et al., Effect of sulfonated carbon nanofiber-supported Pt on performance of Nafion®-based self-humidifying composite membrane for proton exchange membrane fuel cell. Journal of Power Sources  2011. 196: p. 126–132. [6]        Zhang, L., et al., Recent advances in proton exchange membranes for fuel cell applications. Chemical Engineering Journal  2012. 204(206): p. 87–97. [7]        Zhang, J., et al., High temperature PEM fuel cells. Journal of Power Sources   2006. 160: p. 872–891. [8]        Shao, Y., et al., Proton exchange membrane fuel cell from low temperatureb to high temperature: Material challenges. Journal of Power Sources 2007. 167: p. 235–242. [9]        Bose, S., et al., Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science 2011. 36: p. 813–843. [10]      Arigonda, M., A.P. Deshpande, and S. Varughese, Effect of PES on the Morphology and Properties of Proton Conducting Blends with Sulfonated Poly(ether ether ketone). Journal of Applied Polymer Science 2013: p. 5100-5110. [11]      Yen, Y.-C., et al., The effect of sulfonic acid groups within a polyhedral oligomeric silsesquioxane containing cross-linked proton exchange membrane. Polymer, 2010. 51(1): p. 84-91. [12]      Díaz, M., A. Ortiz, and I. Ortiz, Progress in the use of ionic liquids as electrolyte membranes in fuel cells. Journal of Membrane Science, 2014. 469: p. 379-396. [13]      Zhao, Y. and J. Yin, Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application. Journal of Membrane Science, 2010. 351(1-2): p. 28-35. [14]      Sayadi, P., S. Rowshanzamir, and M.J. Parnian, Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone). Energy 2016. 94: p. 292-303. [15]      Sambandam, S. and V. Ramani, SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells. Journal of Power Sources   2007. 170: p. 259–267. [16]      Colliera, A., et al., Degradation of polymer electrolyte membranes. International Journal of Hydrogen Energy 2006. 31: p. 1838–1854. [17]      Kreuer, K.D., On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. Journal of Membrane Science 2001. 185: p. 29-39. [18]      Parnian, M.J., S. Rowshanzamir, and F. Gashoul, Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel cell applications. Energy, 2017. 125: p. 614-628. [19]      Park, C.H., et al., Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 2011. 36: p. 1443-1498. [20]      Carbone, A., et al., Composite S-PEEK membranes for medium temperature polymer electrolyte fuel cells. Journal of Power Sources, 2008. 178: p. 661-666. [21]      Reinholdt, M.X. and S. Kaliaguine, Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir 2010. 26(13): p. 11184–11195. [22]      Luu, D.X. and D. Kim, sPEEK/ZPMA composite proton exchange membrane for fuel cell application. Journal of Membrane Science 2011. 371: p. 248–253. [23]      Gashoul, F., M.J. Parnian, and S. Rowshanzamir, A new study on improving the physicochemical and electrochemical properties of SPEEK nanocomposite membranes for medium temperature proton exchange membrane fuel cells using different loading of zirconium oxide nanoparticles. International Journal of Hydrogen Energy, 2017. 42: p. 590-602. [24]      Onuma, A., et al., Effect of the addition of hydrated titanium oxide on proton conductivity for aromatic polymer electrolyte membrane. Solid State Ionics 2015. 277 p. 72–76. [25]      Peighambardoust, S.J., et al., Self-humidifying nanocomposite membranes based on sulfonated poly(ether ether ketone) and heteropolyacid supported Pt catalyst for fuel cells. International Journal of Hydrogen Energy, 2011. 36: p. 10940-10957. [26]      Rowshanzamir, S., et al., Effect of Pt-Cs2.5H0.5PW12O40 catalyst addition on durability of self-humidifying nanocomposite membranes based on sulfonated poly (ether ether ketone) for proton exchange membrane fuel cell applications. International Journal of Hydrogen Energy, 2015. 40: p. 549-560. [27]      Gong, C., et al., A new strategy for designing high-performance sulfonated poly(ether ether ketone) polymer electrolyte membranes using inorganic proton conductor-functionalized carbon nanotubes. Journal of Power Sources, 2016. 325: p. 453-464. [28]      Mirzaei, F., M.J. Parnian, and S. Rowshanzamir, Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell. Energy, 2017. 138: p. 696-705. [29]      Esmaeilifar, A., et al., Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems. International Journal of Hydrogen Energy, 2011. 36(9): p. 5500-5511. [30]      Vona, M.L.D., et al., SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process. Journal of Membrane Science 2007. 296 p. 156–161. [31]      Du, L., et al., SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles. International Journal of Hydrogen Energy, 2012. 37: p. 11853-11861. [32]      Hasani-Sadrabadi, M.M., et al., Novel nanocomposite proton exchange membranes based on Nafion® and AMPS-modified montmorillonite for fuel cell applications. Journal of Membrane Science 2010. 365 p. 286–293. [33]      Mishra, A.K., et al., Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Progress in Polymer Science, 2012. 37(6): p. 842-869. [34]      Park, K.T., et al., Composite membranes based on a sulfonated poly(arylene ether sulfone) and proton-conducting hybrid silica particles for high temperature PEMFCs. International Journal of Hydrogen Energy, 2011. 36: p. 10891-10900. [35]      Sivasankaran, A. and D. Sangeeth, Influence of sulfonated SiO2 in sulfonated polyether ether ketone nanocomposite membrane in microbial fuel cell. Fuel 2015. 159: p. 689–696. [36]      Peighambardoust, S.J., S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 2010. 35: p. 9349-9384. [37]      Vona, M.L.D., et al., Composite polymer electrolytes of sulfonated poly-ether-ether-ketone (SPEEK) with organically functionalized TiO2. Journal of Membrane Science, 2011. 369 p. 536–544. [38]      Salarizadeh, P., M. Javanbakht, and S. Pourmahdian, Fabrication and physico-chemical properties of iron titanate nanoparticles based sulfonated poly (ether ether ketone) membrane for proton exchange membrane fuel cell application. Solid State Ionics 2015. 281: p. 12–20. [39]      Zhang, Y., et al., Promotion of PEM Self-Humidifying Effect by Nanometer-Sized Sulfated Zirconia-Supported Pt Catalyst Hybrid with Sulfonated Poly(Ether Ether Ketone). The Journal of Physical Chemistry B 2007. 111: p. 6391-6399. [40]      Mossayebi, Z., et al., Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2016. 41(28): p. 12293-12306. [41]      Cozzi, D., et al., Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications. Journal of Power Sources, 2014. 248: p. 1127-1132. [42]      Rambabu, G. and S.D. Bhat, Simultaneous tuning of methanol crossover and ionic conductivity of sPEEK membrane electrolyte by incorporation of PSSA functionalized MWCNTs: A comparative study in DMFCs. Chemical Engineering Journal, 2014. 243: p. 517-525. [43]      Wen, S., et al., Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. International Journal of Hydrogen Energy, 2009. 34: p. 8982-8991.


Download PDF