Abstract




 
   

Vol. 4, No. 1 (Winter 2017) 41-45   

Link: http://www.jree.ir/Vol4/No1/5.pdf
 
Downloaded Downloaded: 44   Viewed Viewed: 308

  Effect of Temperature on Electrical Parameters of Phosphorous Spin–on Diffusion of Polysilicon Solar Cells
 
F. Farhani and S. Azimi-Nam
 
( Received: June 25, 2017 – Accepted: October 11, 2017 )
 
 

Abstract    This paper describes the effect of temperature on the electrical parameters of polysilicon solar cells, which are fabricated using the phosphorous spin-on diffusion technique. The current–voltage characteristics of polycrystalline silicon solar cells were measured in the dark at various temperatures. A diode equivalent model was used to obtain saturation currents, which were measured for the different temperature levels .The experimental results showed that the saturation currents increased rapidly from 0.00003 to 0.0005A on increasing the temperature from 27 to 70 ˚C. The changes in the open circuit voltage and the short circuit current were found to be linear with the temperature variations: about 3 mV/˚C reduction in the open circuit voltage was observed with the temperature increase. The measurements of the short circuit current revealed that the dependency of the current on the temperature variations was very small. The short circuit current increased from 17.8 to 18.4 mA on increasing the temperature from 27 to 107 ˚C. The measurements of output powers versus load resistance were obtained at different temperature levels. The results showed that the output power dropped 30% with temperature rise from 27 to 107˚C.

 

Keywords    Temperature effect, reverse saturation current, open circuit voltage, short circuit current, output power, polysilicon solar cell

 

چکیده    در اين مقاله، نتايج مطالعه تاثير دما بر پارامترهاي الكتريكي سلولهاي خورشيدي پلي سيليكوني، كه به روش لایه نشانی انتشاري چرخشي فسفر ساخته شده اند، ارائه شده است. مشخصه هاي جريان-ولتاژ سلولهاي خورشيدي پلي كريستال سيليكوني در شرايط تاريكي و دماهاي مختلف اندازه گيري شد. يك مدل معادل ديودي براي بدست آوردن جريانهاي اشباع، كه در سطوح دمايي مختلف اندازه گيري شده بودند، مورد استفاده قرار گرفت. نتايج تجربي نشان داد كه با افزايش دما از 27 به ˚C 70، جريانهاي اشباع، بسرعت از 00003/0 به 0005/0 آمپر افزايش مي يابد. ولتاژ مدار باز و جريان مدار كوتاه به طور خطي با دما تغيير مي كنند، كه اين تغيير (كاهش) براي ولتاژ مدار باز، در حدود 3 ميلي ولت به ازاي يك درجه سانتيگراد مي باشد. مقادير اندازه گيري شده جريان مدار كوتاه نشان داد كه وابستگي جريان به نغييرات دمايي بسيار اندك است، به گونه ايي كه به ازاي تغيير دمايي از 27 به ˚C 107، جريان مدار كوتاه صرفا از 17.8 به 18.4 ميلي آمپر افزايش يافت. مقادير اندازه گيري شده توانهاي خروجي در مقادير مختلف مقاومت بار، در چندين سطح دمايي بدست آمد. نتايج نشان دهنده 30% كاهش در توان خروجي به ازاي تغيير دمايي از 27 به ˚C 107مي باشد.

References    [1]    J. J. Wysocki, P. Rappaport, "Effect of temperature on photovoltaic solar energy”, J. Appl. Phys., vol. 31, No. 2, pp. 571–588, 1960.   [2]    W. Luft, “Effect of electron irradiation on N on P silicon solar cells”, Advanced Energy Conversion, vol. 5, No. 1, pp. 21–40, 1965.   [3]    B. Bhaumik, R. Sharan, “Temperature effects in Schottky barrier solar cells”, Appl. Phys. Lett., Vol. 29, No. 4, pp. 257–268, 1976.   [4]    E. L. Burgess, J. G. Fossum, “Performance of n+ - p Silicon solar cells in concentrated sunlight”, IEEE Transaction on Electron Devices, vol. ED24, No. 4, pp. 433–438, 1977. [5]    S. K. Agarwal, S. C. Jain, “Temperature effects in silicon solar cells”, Journal of Solid State Electronics, vol. 23, pp. 1021–1028, 1980).   [6]    S. Zh. Karazhanov, “ Temperature and doping level dependence of solar cell performance including excitons”, Solar Energy Materials and Solar Cells, vol. 63, No. 2, pp. 149–163, 2000.   [7]    M. A. Green, “General temperature dependence of solar cell performance and implications for device modeling”, Progress in Photovoltaics: Research and Applications, vol. 11, No. 5, pp. 333–340, 2003.   [8]    E. Radziemska, “Effect of temperature on dark current characteristics of silicon solar cells and diodes”, International Journal of Energy Research, vol. 30, No. 2, pp. 127–134, 2003.   [9]    E. Radziemska, “The effect of temperature on power drop in crystalline silicon”, Journal of Renewable Energy, vol. 28, No. 1, pp. 1-12, 2003.   [10]  M. Sabry, A.E. Ghitas, “Influence of temperature on methods for determining silicon solar cell series resistance”, Journal of solar Energy Engineering, vol. 129, No. 3, pp. 331–335, 2007.   [11]  P. Singh, S. N. Singh, M. Lal, and M. Husain, "Temperature dependence of I-V characteristics and performance parameters of silicon solar cell", Solar Energy Materials and Solar Cells, vol. 92, No. 12, pp. 1611–1616, December 20, 2008.   [12]  P. Singh, N.M. Ravindra, "Temperature dependence of solar cell performance—an analysis", Solar Energy Materials & Solar Cells, vol. 101, pp. 36-45, 2012.   [13]  S. Dubey, J. N. Sarvaiya, B. Seshadri, "Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World - A Review", PV Asia Pacific Conference 2012, Energy Procedia, vol. 33, pp. 311–321, 2013.   [14]  S. Chander, A. Purohit, A. Sharma, A., S.P. Nehra, and M.S. Dhaka, "A study on photovoltaic parameters of mono-crystalline silicon solar cell with cell temperature", Energy Reports, vol. 1, pp.104-109, 2015.   [15]  S. Azimi-Nam, “Electrical parameters of phosphorous spin-on diffusion of polysilicon solar cells” 22nd International Iranian Power System Conference, 98– E-REN–989, Tehran, Iran, 2007.


Download PDF