Abstract




 
   

Vol. 3, No. 4 (Fall 2016) 34-43   

Link: http://www.jree.ir/Vol3/No4/5.pdf
 
Downloaded Downloaded: 45   Viewed Viewed: 551

  Impact of the use of renewable energy on the cost of electricity and the pollution of the environment in Northern Cameroon
 
J. PEMNDJE, A. Ilinca, T. R. Tene and R. Tchinda
 
( Received: October 11, 2016 – Accepted: May 09, 2017 )
 
 

Abstract    This paper determines and compares the cost of energy (COE) of various hybrid systems for several off-grid facilities in North and Far North regions of Cameroon by integrating renewable sources and/or storage with diesel generators. The estimated annual energy production by solar PV systems and wind turbines is also discussed. The aim is to study the application of a high penetration renewable energy system to be used as backup in case of failure of the electrical network. Based on meteorological data provided by NASA, a hybrid system using photovoltaic panels, wind turbine, diesel generator, batteries and converter was designed using HOMER software to supply electricity to these loads. It is shown that the use of renewable energies (wind and photovoltaic), despite the fact that it requires large investments initially, is the most economical, most profitable and least polluting system.

 

Keywords    Hybrid system, Cameroon, wind energy, photovoltaic energy, Homer.

 

References    References 1.           Yüksel, I., Hydropower for sustainable water and energy development. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 462-469. 2.            Rapport du groupe de travail « Développement de l’offre énergétique de la zone Franc», Ouagadougou. 2009. 3.            Tchinda, R. and E. Kaptouom, Situation des énergies nouvelles et renouvelables au Cameroun. Revue de l’Energie, 1999. 510(8): p. 653-658. 4.            Tchinda, R. and E. Kaptouom, Wind energy in Adamaoua and North Cameroon provinces. Energy Conversion and Management, 2003. 44(6): p. 845-857. 5.            Tchinda, R., et al., Estimation of mean wind energy available in far north Cameroon. Energy Conversion and Management, 2000. 41(17): p. 1917-1929. 6.            Njomo, D., Estimation du potentiel énergétique solaire du Cameroun. . Séminaire Sous régional sur l’énergie solaire du Service du développement., 1986: p. 42-61. 7.            Kamseu, E., et al., Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: Relation microstructure and effective thermal conductivity. Energy and Buildings, 2015. 88(0): p. 45-56. 8.            Tene  Fongang, R.T., et al., Cleaner production  of  the  lightweight  insulating  composites : Microstructure,  pore network  and  thermal  conductivity. Energy  and  Buildings, 2015. 107: p. 113-122. 9.            Ekren, B.Y. and O. Ekren, Simulation based size optimization of a PV/wind hybrid energy conversion system with battery storage under various load and auxiliary energy conditions. Applied Energy, 2009. 86(9): p. 1387-1394. 10.          Ekren, O. and B.Y. Ekren, Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Applied Energy, 2008. 85(11): p. 1086-1101. 11.          Hochart, C., et al., Wind turbine performance under icing conditions. Wind Energy, 2009(11): p. 319-333. 12.          Saheb-Koussa, D., M. Haddadi, and M. Belhamel, Economic and technical study of a hybrid system (wind–photovoltaic–diesel) for rural electrification in Algeria. Applied Energy, 2009. 86(7–8): p. 1024-1030. 13.          Yang, H., Z. Wei, and L. Chengzhi, Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 2009. 86(2): p. 163-169. 14.          Abramson MA, et al. The NOMAD project. Software available at http://www.gerad.ca/nomad. 2012. 15.          Barley CD and W. CB, Optimal dispatch strategy in remote hybrid power systems. Solar Energy, 1996. 58: p. 165-179 16.          Kenfack, J., et al., Microhydro-PV-hybrid system: Sizing a small hydro-PV-hybrid system for rural electrification in developing countries. Renewable Energy, 2009. 34(10): p. 2259-2263. 17.          Kanase-Patil, A.B., R.P. Saini, and M.P. Sharma, Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India. Renewable Energy, 2011. 36(11): p. 2809-2821. 18.          Bakos, G.C., Feasibility study of a hybrid wind/hydro power-system for low-cost electricity production. Applied Energy, 2002. 72(3–4): p. 599-608. 19.          Connolly, D., et al., A review of computer tools for analysing the integration of renewable energy into various energy systems. Applied Energy, 2010. 87(4): p. 1059-1082. 20.          Chauhan, A. and R.P. Saini, A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 2014. 38(0): p. 99-120. 21.          Vagliani, R. and A. Ilinca, Étude et conception des outils aidant à compléter l’utilisation d’AnémoScope Available from: http://biblio.uqar.qc.ca/archives/30110643.pdf, 2009. 22.          Kidmo, D.K., et al., Statistical analysis of wind speed distribution based on six Weibull Methods for wind power evaluation in Garoua, Cameroon. Revue des Energies Renouvelables. 18(1): p. 105-125. 23.          Akpinar, E.K. and S. Akpinar, An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics. Energy Conversion and Management, 2005. 46(11–12): p. 1848-1867. 24.          Jonhson, G., Wing energy systems. Electronic edition. 2001: Manhattan KS. 25.          Akdağ, S.A., H.S. Bagiorgas, and G. Mihalakakou, Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean. Applied Energy, 2010. 87(8): p. 2566-2573. 26.          Elliott DL, H.C., Barchet WR, Foote HP, Sandusky WF, Wind energy resource atlas of the United States. DOE/CH10094-4. 1987. 27.          Ohunakin, O.S., M.S. Adaramola, and O.M. Oyewola, Wind energy evaluation for electricity generation using WECS in seven selected locations in Nigeria. Applied Energy, 2011. 88(9): p. 3197-3206. 28.          Boweden G. J., B.P.R., Shestopal V. O., Twidell J.W, The Weibull distribution function and wind statistics. Wind Eng. , 1983(7): p. 85–98. 29.          Ucar, A. and F. Balo, Evaluation of wind energy potential and electricity generation at six locations in Turkey. Applied Energy, 2009. 86(10): p. 1864-1872. 30.          Ibrahim, H. and A. Ilinca, Techno-Economic Analysis of Different Energy Storage Technologies. Energy Storage, editor InTech, 2013. 31.          Ibrahim, H., A. Ilinca, and J. Perron, Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 2008. 12(5): p. 1221-1250. 32.          Ibrahim, H., et al., Study and design of a hybrid wind–diesel-compressed air energy storage system for remote areas. Applied Energy, 2010. 87(5): p. 1749-1762. 33.          Weis, T.M. and A. Ilinca, The utility of energy storage to improve the economics of wind–diesel power plants in Canada. Renewable Energy, 2008. 33(7): p. 1544-1557. 34.          Weis, T.M. and A. Ilinca, The utility of energy storage to improve the economics of wind-diesel power plants in Canada. Renewable Energy, 2008. 33(7): p. 1544-1557. 35.          Akinboadea, O.A. and E.C. Kinfacka, Interest rate reforms, financial deepening and economic growth in Cameroon: an empirical investigation. Applied Economics, 2013. 45(25): p. 3574-3586. 36.          http://www.globalpetrolprices.com/Cameroon/diesel_prices. may 2016. 37.          Ibrahim, H., et al., Investigation des générateurs hybrides d’électricité de type éolien-air comprimé. Numéro spécial CER, 2007. 38.          Oladokun, V.O. and O.C. Asemota, Unit cost of electricity in Nigeria: A cost model for captive diesel powered generating system. Renewable and Sustainable Energy Reviews, 2015. 52: p. 35-40. 39.          Şahin, Z. and O. Durgun, Improving of diesel combustion-pollution-fuel economy and performance by gasoline fumigation. Energy Conversion and Management, 2013. 76(0): p. 620-633.


Download PDF