Vol. 3, No. 4 (Fall 2016) 10-19   

Link: http://www.jree.ir/Vol3/No4/2.pdf
Downloaded Downloaded: 90   Viewed Viewed: 790

  Life-cycle Assessment of Environmental Effects on Rapeseed Production
B. Hosseinzadeh and S. Choobin
( Received: June 09, 2016 – Accepted: May 09, 2017 )

Abstract    In recent years, increasing the awareness on the environmental problems, especially global warming, has increase the concerns about the impact of emissions on the global climate. The current study was conducted to evaluate and analyze the environmental effects of rapeseed production in the form of life cycle using SimaPro software with the aim concentration on climate changes and impact of acidification. In order to perform the experiments, 1 tone rapeseed was used as operational unit. The required data was collected from 30 farms in Izeh city. Ten environmental indexes including depletion of groundwater resources, potential to acidification, potential to eutrophication, potential to global warming, ozone depletion potential, human toxicity potential, potential to toxicity of fresh water and marine fish, potential to environmental toxicity, potential to photochemical oxidation were investigated in this research. Results showed that the amount of greenhouse emissions for rapeseed was equal to 112.73 kg of carbon dioxide equivalent. It was also revealed that chemical fertilizer had the highest share among the evaluated inputs within the life cycle. Results obtained in this survey indicated that management of nutrients and pesticides can be considered as a concentration point for optimizing the environmental influences of rapeseed production in the related region.


Keywords    Environment, Canola, SimaPro, LCA


چکیده    در سال‌هاي اخير با گسترش آگاهي در زمينه مساله محيط زيست بويژه گرمايش زمين، نگراني در مورد تأثير انتشار آلاينده‌ها بر اقليم جهاني افزايش يافته است. تحقيق حاضر با هدف بررسي، تجزيه و تحليل اثرات زيست محيطي کشت محصول کلزا در قالب ارزيابي چرخه زندگي با استفاده از نرم‌افزار سيماپرو 8 جهت تمرکز بر تغييرات آب و هوايي و تاثير اسيدي شدن انجام شده و يک تن کلزا به عنوان واحد عملياتي انتخاب شده است. داده‌هاي مورد نياز از 30 مزرعه کلزا در شهرستان ايذه جمع‌آوري گرديد. ده شاخص زيست محيطي از جمله تخليه منابع زيرزميني (غير زنده)، پتانسيل اسيدي شدن، پتانسيل يوتريفيکاسيون، پتانسيل گرمايش جهاني، پتانسيل تخليه اوزون، پتانسيل سميت انساني، پتانسيل سميت آب شيرين و آبزيان دريايي، پتانسيل سميت محيط زيست و پتانسيل اکسيداسيون فتوشيميايي در اين مطالعه مورد بررسي قرار گرفت. نتايج بدست آمده نشان مي‌دهد که ميزان انتشار گازهاي گلخانه‌اي براي کلزا 73/112کيلوگرم معادل دي‌اکسيدکربن است و کود شيميايي بيشترين سهم را در بين نهاده‌هاي مصرفي در اين چرخه زندگي داشته است. علاوه بر اين بالاترين درجه از اثرات زيست محيطي در طول فرآيند سميت آبي رخ داده است.  نتايج حاصل از اين بررسي نشان مي‌دهد يک نقطه تمرکز براي بهينه‌سازي اثرات زيست محيطي حاصل از کشت کلزا در منطقه، مديريت مواد مغذي و آفت‌کش‌ها است.

References    [1] J. Tickell, K. Tickell, From the fryer to the fuel tank: the complete guide to using vegetable oil as an alternative fuel, Biodiesel America, 2003. [2] T. Nemecek, A. Heil, O. Huguenin, S. Meier, S. Erzinger, S. Blaser, D. Dux, A. Zimmermann, Life cycle inventories of agricultural production systems, Final report ecoinvent v2. 0 No, 15 (2007). [3] M.A. Rajaeifar, B. Ghobadian, M.D. Heidari, E. Fayyazi, Energy consumption and greenhouse gas emissions of biodiesel production from rapeseed in Iran, Journal of Renewable and Sustainable Energy, 5 (2013) 063134. [4] I. In, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K, editors, IPCC guidelines for national greenhouse gas inventories, prepared by the National Greenhouse Gas Inventories Programme. Hayama, Japan: IGES, (2006). [5] S. Hokazono, K. Hayashi, Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan, Journal of Cleaner Production, 28 (2012) 101-112. [6] S. Liang, M. Xu, T. Zhang, Life cycle assessment of biodiesel production in China, Bioresource technology, 129 (2013) 72-77. [7] A. Bouwman, Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere, Soils and the greenhouse effect, (1990) 61-127. [8] A.L. Hammond, E. Rodenburgand, W. Moomaw, Accountability in the greenhouse, Nature, 347 (1990) 705-706. [9] M. Goedkoop, A. De Schryver, M. Oele, S. Durksz, D. de Roest, Introduction to LCA with SimaPro 7, PRé Consultants, The Netherlands, (2008). [10] I. ISO, 14040: Environmental management–life cycle assessment–principles and framework, London: British Standards Institution, (2006). [11] K. Abeliotis, V. Detsis, C. Pappia, Life cycle assessment of bean production in the Prespa National Park, Greece, Journal of Cleaner Production, 41 (2013) 89-96. [12] B. Khoshnevisan, M.A. Rajaeifar, S. Clark, S. Shamahirband, N.B. Anuar, N.L.M. Shuib, A. Gani, Evaluation of traditional and consolidated rice farms in Guilan Province, Iran, using life cycle assessment and fuzzy modeling, Science of the Total Environment, 481 (2014) 242-251. [13] A. Sahle, J. Potting, Environmental life cycle assessment of Ethiopian rose cultivation, Science of the total environment, 443 (2013) 163-172. [14] S.H. Mousavi-Avval, S. Rafiee, A. Jafari, A. Mohammadi, Improving energy use efficiency of canola production using data envelopment analysis (DEA) approach, Energy, 36 (2011) 2765-2772. [15] M. Liebig, J. Morgan, J. Reeder, B. Ellert, H. Gollany, G. Schuman, Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada, Soil and Tillage Research, 83 (2005) 25-52. [16] M.A. Rajaeifar, M. Tabatabaei, H. Ghanavati, Data supporting the comparative life cycle assessment of different municipal solid waste management scenarios, Data in brief, 3 (2015) 189-194. [17] S. Singh, J. Mittal, Energy in production agriculture, Mittal Publications, 1992. [18] A. Mohammadshirazi, A. Akram, S. Rafiee, S.H.M. Avval, E.B. Kalhor, An analysis of energy use and relation between energy inputs and yield in tangerine production, Renewable and sustainable energy reviews, 16 (2012) 4515-4521. [19] J. Ortiz-Cañavate, J. Hernanz, Energy for biological systems, Energy and biomass engineering, 5 (1999) 13-24. [20] G. Unakitan, H. Hurma, F. Yilmaz, An analysis of energy use efficiency of canola production in Turkey, Energy, 35 (2010) 3623-3627. [21] S.H. Mousavi-Avval, S. Rafiee, A. Jafari, Sensitivity analysis of agrochemical energy inputs and their environmental impacts in rapeseed production. [22] O. Kitani, CIGR Handbook of Agricultural Engineering, Volume V Energy and Biomass Engineering, Chapter 1 Natural Energy and Biomass, Part 1.3 Biomass Resources, (1999). [23] J. Ortiz-Cañavate, J. Hernanz, Energy analysis and saving, CIGR Handbook of agricultural engineering, 5 (1999). [24] H. Van Zeijts, H. Leneman, A.W. Sleeswijk, Fitting fertilisation in LCA: allocation to crops in a cropping plan, Journal of Cleaner Production, 7 (1999) 69-74. [25] J. Bare, TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0, Clean Technologies and Environmental Policy, 13 (2011) 687-696. [26] J. Tzilivakis, D. Warner, M. May, K. Lewis, K. Jaggard, An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK, Agricultural Systems, 85 (2005) 101-119. [27] F. Brentrup, J. Küsters, H. Kuhlmann, J. Lammel, Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production, European Journal of Agronomy, 20 (2004) 247-264. [28] M.A. Rajaeifar, A. Akram, B. Ghobadian, S. Rafiee, M.D. Heidari, Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran, Energy, 66 (2014) 139-149. [29] N. Millar, G.P. Robertson, P.R. Grace, R.J. Gehl, J.P. Hoben, Nitrogen fertilizer management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emissions reduction protocol for US Midwest agriculture, Mitigation and Adaptation Strategies for Global Change, 15 (2010) 185-204.

Download PDF