Abstract




 
   

Vol. 3, No. 3 (Summer 2016) 31-43   

Link: http://www.jree.ir/Vol3/No3/4.pdf
 
Downloaded Downloaded: 32   Viewed Viewed: 178

  One-Dimensional Electrolyzer Modeling and System Sizing for Solar Hydrogen Production: an Economic Approach
 
M. Jamali and F. Ommi
 
( Received: March 03, 2016 – Accepted: October 04, 2016 )
 
 

Abstract    In this paper, a solar based hydrogen production in the city of Tehran, the capital of Iran is simulated and the cost of produced hydrogen is evaluated. Local solar power profile is obtained using TRNSYS software for a typical parking station in Tehran. The generated electricity is used to supply power to a Proton Exchange Membrane (PEM) electrolyzer for hydrogen production. Dynamic nature of solar power and necessity of reasonable accuracy for estimating of amount of hydrogen production leads to propose a new 1D dynamic fluid flow model for PEM electrolyzer cell simulation. The hydrogen price in this system is estimated using Equivalent Annual Worth (EAW) analysis. Although it is convenient to select a yearly useful lifetime for electrolyzer as well as solar cells in this paper an hourly lifetime is considered which allows finding the hydrogen cost based on electrolyzer operating time. Also, electrolyzer sizing is done by selecting various number of cells for each stack and alternatives are compared from performance and economic point of view. In this regards 4 cases consist of 2, 3, 4 and 5 electrolyzer cell are compared. Hydrogen price at each case is evaluated and sensitivity analysis is performed. The results represent that the system with higher efficiency is not always an economical choice. As an alternative, the electrolyzer turning off at some conditions is also investigated for possibility of extending lifetime and reducing the hydrogen price. It is found that turning off the electrolyzer under specified minimum current density (2000 A/m2) in all cases reduce the final produced hydrogen price however this price and electrolyzer size is still strongly dependent to the electrolyzer capital cost.

 

Keywords    Electrolysis, PEM, Dynamic modeling, Hydrogen production

 

چکیده    در این مقاله یک سیستم تولید هیدروژن در تهران مدلسازی و هزینه هیدروژن تولیدی ارزیابی شده است. پروفیل توان خورشیدی که به کمک نرم افزار TRNSYS برای یک پارکینگ بدست آمده جهت تجزیه آب بوسیله یک الکترولایزر غشا تبادل یونی (PEM) بکار گرفته شده است. ماهیت دینامیک توان خورشیدی و نیاز به دقت مناسب در برآورد مقدار هیدروژن تولیدی در یک زمان حل معقول منجر به پیشنهاد یک مدل دینامیک یک بعدی برای شبیه سازی الکترولایزر گردید. همچنین برای برآورد قیمت هیدروژن تولیدی روش تحلیل ارزش سالانه معادل (EAW) مورد استفاده قرار گرفت. اگرچه معمولا عمر مفید الکترولایزر همانند پنل های خورشیدی در قالب سالانه مورد تحلیل قرار می گیرد، اما در اینجا عمر مفید الکترولایزر در قالب تعداد ساعت کاری در نظر گرفته شده است تا بتوان قیمت تمام شده هیدروژن را بر اساس مدت زمان کارکرد الکترولایزر مورد تحلیل قرار داد. همچنین برای سایزینگ الکترولایزر تعداد سل های مختلفی برای هر استک در نظر گرفته شده و گزینه ها از منظر عملکردی و اقتصادی مورد بررسی قرار گرفتند. در این زمینه 4 استک مختلف که هر یک به ترتیب از 2، 3، 4 و 5 سل تشکیل شده اند مقایسه شدند. قیمت هیدروژن در هر مورد محاسبه و آنالیز حساسیت انجام گرفت. نتایج نشان داد که یک سسیتم با بازدهی بالاتر همیشه گزینه اقتصادی مناسبی نخواهد بود. همچنین به عنوان یک راهکار خاموش کردن الکترولایزر تحت شرایط مشخصی جهت بررسی امکان افزایش عمر مفید و کاهش هزینه تولید هیدروژن مورد تحقیق قرار گرفت. نتایج حاکی از آن است که خاموش کردن الکترولایزر در شرایطی که چگالی جریان از یک حد مینیمم کمتر است (2000 A/m2) در همه موارد قیمت نهایی هیدروژن تولیدی را کاهش می دهد اما این قیمت و همچنین اندازه الکتزولایزر همچنان به هزینه اولیه الکترولایزر وابستگی شدیدی دارد.

References    1. Kim H., Park M. and Lee K. S., One-dimensional dynamic modeling of a highpressure water electrolysis system for hydrogen production, Int J Hydrogen Energy, 2013, 38, 2596. 2. Ghribi D., Khelifa A., Diaf S., Belhamel M., Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria, International Journal of Hydrogen Energy, 20, 2013, 38, 2596. 3. Dursun E., Acarkan B., Kilic O., Modeling of hydrogen production with a stand-alone renewable hybrid power system, International Journal of Hydrogen Energy, 2012, 37, 3098 4. Akyuz E., Coskun C., Oktay Z., Dincer I.,    Hydrogen production probability distributions for a PV-electrolyser system, International Journal of Hydrogen Energy, 2011, 36, 11292   5.  Sopian K., Ibrahim M. Z., Daud W. R. W.,  Othman M. Y. , Amin N., Performance of a PV–wind hybrid system for hydrogen production, Renewable Energy, 2007, 34, 1973. 6. Ahmadi P., Dincer I., Rosen M. A., Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis, International Journal of Hydrogen Energy, 2013, 38, 1795 7. Shah A., Mohan V., Sheffield J. W., Martin K. B., Solar powered residential hydrogen fueling station, International Journal of Hydrogen Energy, 2011, 36, 13132. 8. Su Z., Ding S., Gan Z., Yang X., Optimization and sensitivity analysis of a photovoltaic-electrolyser direct-coupling system in Beijing, International Journal of Hydrogen Energy, 2014, 39, 7202 9. C. Ziogou, Ipsakis D., Seferlis P., Bezergianni S., Papadopoulou S., Voutetakis S., Optimal production of renewable hydrogen based on an efficient energy management strategy, Energy, 2013 55, 58 10. Ahmadi P., Dincer I., Rosen M. A. Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production, International Journal of Hydrogen Energy, 2015, 40, 7601 11. Paul B., Andrews J., Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply, International Journal of Hydrogen Energy, 2008, 33, 490 12. García-Valverde R., Espinosa N., Urbina A.,  Optimized method for photovoltaic-water electrolyser direct coupling, International Journal of Hydrogen Energy, 2011, 36, 10574. 13. Gibson T. L., Kelly N. A., Optimization of solar powered hydrogen production using photovoltaic electrolysis devices, International Journal of Hydrogen Energy, 2008, 33, 5931 14. Gibson T. L., Kelly N. A., Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices, International Journal of Hydrogen Energy, 2010, 35, 900 15. Gorgun  H., Dynamic modeling of a proton exchangemembrane (PEM) electrolyzer, Int J Hydrogen Energy, 2006, 31. 16.Dale N.V., Mann M.D. and Salehfar H., Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characterstics, Journal of Power Sources, 2008, 185.   17.Santarelli M., Medina P. and Cali M., Fitting regression model and experimental validation for a high pressure PEM electrolyzer, Int J Hydrogen Energy, 2009, 34. 18. Marangio, F., Santarelli, M. and Cali, M., Theoretical model and experimental analysis of a high pressure PEM water electrolyzer for hydrogen production, Int J Hydrogen Energy, 2009, 34. 19. Awasthi, A., Scott K. and Basu S., Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production, Int J Hydrogen Energy, 2011, 36. 20. Lee B. Park K. and Man Kim H. Dynamic Simulation of PEM Water Electrolysis and Comparison with Experiments, Int. J. Electrochem, 2013, 8. 21. Ainscough C., Peterson D., Miller E. Hydrogen Production Cost From PEM Electrolysis. DOE USA. 2014. 14004. 22. Genevieve S. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study. DOE USA. 2008. NREL/TP-550-44103. 23. Meratizamana M. , Monadizadeh S., Amidpour M., Simulation, economic and environmental evaluations of green solar parking (refueling station) for fuel cell vehicle, international journal of hydrogen energy, 2014, 39, pp. 2359 24. Gökçek, Murat, Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes, International Journal of Hydrogen Energy, 2010, 35, 10050 25. Z. Liu, Z. Qiu, Y. Luo, Z. Mao, C. Wang, Operation of first solar-hydrogen system in China, International Journal of Hydrogen Energy, 2008, 35, 2762 26. Bertola V., Modelling and Experimentation in Two-Phase Flow, Spring-Verlag Wien GmbH, 2014. 27. Bird R. B., Stewart W. E. and Lightfoot E. N.,Transport Phenomena, John Wiley & Sons, 2007. 28. Medina P. and Santarelli M., Analysis of water transport in a high pressure PEM electrolyzer, International Journal of Hydrogen Energy, 2010, 35, 5173 29. Larminie J. and Dicks A. ,Fuel cell systems explained, John Wiley & Sons, 2003 30.Versteeg H. K., and Malalasekera ‎W. ,Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007. 31. Rheinboldt W. C. 2end ed., Methods for Solving Systems of Nonlinear Equations, SIAM, 1998. 32. Abbaspour M., Chapman K. S. and Glasgow L., Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines, Applied Mathematical Modelling, 2010,  34, 495. 33. Chenni R., Makhlouf M. , Kerbache T. , Bouzid A.,  A detailed modeling method for photovoltaic cells, Energy, 2007, 32, 1724 34. Ahmadi P. , Dincer I., Rosen M. A., Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto Canada, International Journal of Hydrogen Energy, 2015, 40, 7846 35. Eschenbach T. G., Engineering economy applying theory to practice, 2003,  OXFORD UNIVERSITY PRESS, New York.1. Kim H., Park M. and Lee K. S., One-dimensional dynamic modeling of a highpressure water electrolysis system for hydrogen production, Int J Hydrogen Energy, 2013, 38, 2596. 2. Ghribi D., Khelifa A., Diaf S., Belhamel M., Study of hydrogen production system by using PV solar energy and PEM electrolyser in Algeria, International Journal of Hydrogen Energy, 20, 2013, 38, 2596. 3. Dursun E., Acarkan B., Kilic O., Modeling of hydrogen production with a stand-alone renewable hybrid power system, International Journal of Hydrogen Energy, 2012, 37, 3098 4. Akyuz E., Coskun C., Oktay Z., Dincer I.,    Hydrogen production probability distributions for a PV-electrolyser system, International Journal of Hydrogen Energy, 2011, 36, 11292   5.  Sopian K., Ibrahim M. Z., Daud W. R. W.,  Othman M. Y. , Amin N., Performance of a PV–wind hybrid system for hydrogen production, Renewable Energy, 2007, 34, 1973. 6. Ahmadi P., Dincer I., Rosen M. A., Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis, International Journal of Hydrogen Energy, 2013, 38, 1795 7. Shah A., Mohan V., Sheffield J. W., Martin K. B., Solar powered residential hydrogen fueling station, International Journal of Hydrogen Energy, 2011, 36, 13132. 8. Su Z., Ding S., Gan Z., Yang X., Optimization and sensitivity analysis of a photovoltaic-electrolyser direct-coupling system in Beijing, International Journal of Hydrogen Energy, 2014, 39, 7202 9. C. Ziogou, Ipsakis D., Seferlis P., Bezergianni S., Papadopoulou S., Voutetakis S., Optimal production of renewable hydrogen based on an efficient energy management strategy, Energy, 2013 55, 58 10. Ahmadi P., Dincer I., Rosen M. A. Multi-objective optimization of an ocean thermal energy conversion system for hydrogen production, International Journal of Hydrogen Energy, 2015, 40, 7601 11. Paul B., Andrews J., Optimal coupling of PV arrays to PEM electrolysers in solar–hydrogen systems for remote area power supply, International Journal of Hydrogen Energy, 2008, 33, 490 12. García-Valverde R., Espinosa N., Urbina A.,  Optimized method for photovoltaic-water electrolyser direct coupling, International Journal of Hydrogen Energy, 2011, 36, 10574. 13. Gibson T. L., Kelly N. A., Optimization of solar powered hydrogen production using photovoltaic electrolysis devices, International Journal of Hydrogen Energy, 2008, 33, 5931 14. Gibson T. L., Kelly N. A., Predicting efficiency of solar powered hydrogen generation using photovoltaic-electrolysis devices, International Journal of Hydrogen Energy, 2010, 35, 900 15. Gorgun  H., Dynamic modeling of a proton exchangemembrane (PEM) electrolyzer, Int J Hydrogen Energy, 2006, 31. 16.Dale N.V., Mann M.D. and Salehfar H., Semiempirical model based on thermodynamic principles for determining 6 kW proton exchange membrane electrolyzer stack characterstics, Journal of Power Sources, 2008, 185.   17.Santarelli M., Medina P. and Cali M., Fitting regression model and experimental validation for a high pressure PEM electrolyzer, Int J Hydrogen Energy, 2009, 34. 18. Marangio, F., Santarelli, M. and Cali, M., Theoretical model and experimental analysis of a high pressure PEM water electrolyzer for hydrogen production, Int J Hydrogen Energy, 2009, 34. 19. Awasthi, A., Scott K. and Basu S., Dynamic modeling and simulation of a proton exchange membrane electrolyzer for hydrogen production, Int J Hydrogen Energy, 2011, 36. 20. Lee B. Park K. and Man Kim H. Dynamic Simulation of PEM Water Electrolysis and Comparison with Experiments, Int. J. Electrochem, 2013, 8. 21. Ainscough C., Peterson D., Miller E. Hydrogen Production Cost From PEM Electrolysis. DOE USA. 2014. 14004. 22. Genevieve S. Wind-To-Hydrogen Project: Electrolyzer Capital Cost Study. DOE USA. 2008. NREL/TP-550-44103. 23. Meratizamana M. , Monadizadeh S., Amidpour M., Simulation, economic and environmental evaluations of green solar parking (refueling station) for fuel cell vehicle, international journal of hydrogen energy, 2014, 39, pp. 2359 24. Gökçek, Murat, Hydrogen generation from small-scale wind-powered electrolysis system in different power matching modes, International Journal of Hydrogen Energy, 2010, 35, 10050 25. Z. Liu, Z. Qiu, Y. Luo, Z. Mao, C. Wang, Operation of first solar-hydrogen system in China, International Journal of Hydrogen Energy, 2008, 35, 2762 26. Bertola V., Modelling and Experimentation in Two-Phase Flow, Spring-Verlag Wien GmbH, 2014. 27. Bird R. B., Stewart W. E. and Lightfoot E. N.,Transport Phenomena, John Wiley & Sons, 2007. 28. Medina P. and Santarelli M., Analysis of water transport in a high pressure PEM electrolyzer, International Journal of Hydrogen Energy, 2010, 35, 5173 29. Larminie J. and Dicks A. ,Fuel cell systems explained, John Wiley & Sons, 2003 30.Versteeg H. K., and Malalasekera ‎W. ,Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education Limited, 2007. 31. Rheinboldt W. C. 2end ed., Methods for Solving Systems of Nonlinear Equations, SIAM, 1998. 32. Abbaspour M., Chapman K. S. and Glasgow L., Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines, Applied Mathematical Modelling, 2010,  34, 495. 33. Chenni R., Makhlouf M. , Kerbache T. , Bouzid A.,  A detailed modeling method for photovoltaic cells, Energy, 2007, 32, 1724 34. Ahmadi P. , Dincer I., Rosen M. A., Transient thermal performance assessment of a hybrid solar-fuel cell system in Toronto Canada, International Journal of Hydrogen Energy, 2015, 40, 7846 35. Eschenbach T. G., Engineering economy applying theory to practice, 2003,  OXFORD UNIVERSITY PRESS, New York.


Download PDF